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The Plan

LECTURE 1  

SUSY Essentials

Neutralino Cosmology
Relic Density
Detection

LECTURE 2

Gravitino Cosmology
Relic Density
Detection

Particle/Cosmo Synergy
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Gravitino Cosmology

• In Lecture 1, the gravitino made a brief appearance 
in the SUSY spectrum, then we ignored it.  Why?

• Gravitinos have a bad reputation, causing all sorts 
of trouble.  

• But interesting implications for CMB, BBN, inflation, 
reheating,…
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Gravitino Properties

• G̃ mass: expect ~ 100 GeV – 1 TeV
[high-scale SUSY breaking]

• G̃ interactions:

Couplings grow
with energy: 

G̃

B̃

Bµ

E/MPl
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Gravitino Relic Density
• If the universe cools from T ~ MPl, expect nG ̃ ~ neq. 
• Gravitinos decouple while relativistic, keep the same 

thermal density.

• Stable:

(cf. neutrinos)
Pagels, Primack (1982)

• Unstable:

BBN mG ̃ > 10-100 TeV
Weinberg (1982)

Both inconsistent with natural mass range.  But gravitinos may 
be DM if stable and bound saturated (introduce new scale).
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Gravitinos from Reheating

• More modern view: gravitino density is diluted by inflation.

• But gravitinos regenerated in reheating.  What happens?

SM interaction rate >> expansion rate >> G̃ interaction rate

• Thermal bath of SM particles: occasionally they interact to 
produce a gravitino: f f → f G̃
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Gravitinos from Reheating

Dilution from
expansion

f G̃ → f f f f → f G̃

0

• The Boltzmann
equation:

• Change variables:

• New Boltzmann
equation:

• Really simple: Y ~ reheat temperature
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Bounds on TRH

• <σv> for important production 
processes:

• TRH < 108 – 1010 GeV; constrains 
inflation, leptogenesis

• G̃ DM if bound saturated 
(introduce new scale).

Bolz, Brandenburg, Buchmuller (2001)
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Gravitinos from Late Decay
• What if gravitinos are diluted by inflation, and the universe 

reheats to low temperature?

• G̃ LSP

• More trouble/opportunities

• G̃ not LSP

• No impact – implicit 
assumption of Lecture 1

SM

LSP
G̃

SM

NLSP

G̃
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Gravitinos from Late Decay
• Early universe behaves as 

usual, WIMP freezes out with 
desired thermal relic density

• A year passes…then

all WIMPs decay to gravitinos
• Gravitinos inherit WIMP 

density, but are superweakly
interacting – superWIMPs

WIMP≈
G̃

Gravitino cold dark matter again, but now no new scales



SUSY and Cosmology SSI03 Lecture 2 Feng 10

Gravitino Cosmology: Detection
• Gravitinos undetectable now.  But late decays occur 

before CMB but after BBN.  This can be tested.

Baryometry

WMAP

ηD = ηCMB

[7Li low]

Fields, Sarkar, PDG (2002) Cyburt, Fields, Olive (2003)
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Gravitino Signals: BBN
• Signals are determined by 

WIMP: e.g., B ̃→ G̃ γ,…

• mWIMP and mG ̃ and determine
Decay time: τX

Energy release: ζEM = ∆m nG̃ / nγ

(ΩG̃ = ΩDM)

BBN excludes shaded regions

G̃ DM predicts grid region, 
distortions in precision BBN 
(including low 7Li).

Cyburt, Ellis, Fields, Olive (2002)

Feng, Rajaraman, Takayama (2003)
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Gravitino Signals: CMB
• Late decays may also distort 

the CMB spectrum. 

• For 105 s < τ < 107 s, get
“µ distortions”:

µ=0: Planckian spectrum
µ≠0: Bose-Einstein spectrum

• Current bound: |µ| < 9 x 10-5

Future (DIMES): |µ| ~ 2 x 10-6
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Gravitino Cosmology: Summary

• Gravitinos: many production mechanisms, 
may be dark matter.

• Interact only gravitationally, so escape all 
conventional dark matter searches, but…

• Detection possible in BBN, CMB, diffuse 
photon background, metastable heavy 
charged particles at colliders, …
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Particle/Cosmo Synergy

• We’ve seen many SUSY implications for 
cosmology (and we’ve omitted many SUSY 
scenarios, other well-studied possibilities, ideas 
not yet conceived,…)

• What prospects are there for sorting this out?

• Consider neutralino dark matter (not so optimistic 
about prospects for baryogenesis, dark energy,…) 
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Limitations of Separate Approaches

• Dark matter experiments cannot discover SUSY
– can only provide reasonable constraints on 

mass, interaction strengths

• Colliders cannot discover dark matter
– can only verify τ > 10−7 s, 24 orders of magnitude 

short of the age of the universe
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Particle/Cosmo Interface
Collider Inputs

SUSY Parameters

χχ Annihilation χN Interaction

Relic Density        Indirect Detection Direct Detection

Astrophysical and Cosmological Inputs
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Relic Density
• Cosmology: ΩDM = 0.23 ± 0.04.   What can HEP tell us?

Focus point region
χ ≈ Bino-Higgsino

Sensitive to χ
composition

Feng, M
atchev, W

ilczek
(2000)

Relic density regions
and gaugino-ness (%)

Co-annih. region
χ ≈ pure Bino

Very sensitive to mf ̃χ τ

τ̃ γ

τ

Bulk region
χ ≈ pure Bino
Sensitive to mf ̃
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Relic Density: LHC
• Assume χ ≈ pure Bino,  l ̃̃R

flavor degenerate

• <σv> determined primarily by 
χ and ẽ̃R masses  (ẽ̃R light 
and has large hypercharge)

• Can find Ωχ to ~ 20%. Then 
try to confirm assumptions.

Drees, Kim, Nojiri, Toya, Hasuko, Kobayashi (2000)

σ(l ̃̃R only) / σ(exact)
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Relic Density: LC
Ωχ typically implies light SUSY:
• Either light sleptons, or
• Mixed gaugino-Higgsino LSP, so

light neutralinos and charginos

If sleptons accessible, typically 
measure masses to ~1%.

Gaugino-ness measured through 
spectrum or polarized cross 
sections.

Potential for highly model-
independent measurement of Ωχ
to ~ few % at LHC/LC.

σ(eRe+ → χ+χ-) (fb)

Feng, Murayama, Peskin, Tata (1995)

LC500

−

B̃

H ̃

B̃
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Consistency

• Particle Physics + standard cosmology predictions 
for 

Ωχ

Direct detection rates
Indirect detection rates

• If observations and experiments corroborate each 
other, we understand the universe back to 10-8 sec
(T ~ 10 GeV) ! 

[Cf. Big Bang nucleosynthesis at 1 sec (T ~ 1 MeV) ]
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Discrepancies
• Thermal relic density need not be the actual relic 

density (e.g., late decays)
– The mismatch tells us about the history of the 

universe between 10-8 s < t < 1 s

• Detection rates need not be the actual detection rates
– the mismatch tells us about halo profiles, dark 

matter velocity distributions,… 

• LHC/LC not only may identify DM as SUSY, but also 
may shed light on “astrophysical” problems
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Example: Galactic Halo Profile

• Halo profiles are not well-
known (cuspy, clumpy, …)

• An indirect dark matter signal 
is photons from the galactic 
center:

• Flux + LHC/LC halo profile
Feng, Matchev, Wilczek (2000)

Astrophysics Particle
Physics

Halo
Profile

Buckley et al. (1999)
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Summary

• Particle physics and cosmology both point to 
new physics at the weak scale

• Neutralino and gravitino cosmology provide 
rich arenas for exploring the wealth of 
possibilities

• The golden age of particle physics / 
astroparticle / cosmology is yet to come!
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