The Plan

LECTURE 1

SUSY Essentials

Neutralino Cosmology Relic Density Detection

LECTURE 2

Gravitino Cosmology Relic Density Detection

Particle/Cosmo Synergy

Gravitino Cosmology

- In Lecture 1, the gravitino made a brief appearance in the SUSY spectrum, then we ignored it. Why?
- Gravitinos have a bad reputation, causing all sorts of trouble.
- But interesting implications for CMB, BBN, inflation, reheating,...

Gravitino Properties

• \tilde{G} mass: expect ~ 100 GeV – 1 TeV

[high-scale SUSY breaking]

• *Ĝ* interactions:

$$-\frac{i}{8M_{\rm Pl}}\bar{\tilde{G}}_{\mu}\left[\gamma^{\nu},\gamma^{\rho}\right]\gamma^{\mu}\tilde{B}F_{\nu\rho}$$

Couplings grow with energy:

Gravitino Relic Density

- If the universe cools from $T \sim M_{\text{Pl}}$, expect $n_{\tilde{G}} \sim n_{\text{eq}}$.
- Gravitinos decouple while relativistic, keep the same thermal density.
- Stable:

$$\Omega_{\tilde{G}} < 1 \Rightarrow m_{\tilde{G}} < 1 \text{ keV}$$

(cf. neutrinos)

Pagels, Primack (1982)

• Unstable:

$$\tau_{\tilde{G}} \sim \frac{M_{\rm Pl}^2}{m_{\tilde{G}}^3} \sim 1 \ {\rm yr} \left[\frac{100 \ {\rm GeV}}{m_{\tilde{G}}}\right]^3$$

 $BBN \rightarrow m_{\tilde{G}} > 10-100 \text{ TeV}$

Weinberg (1982)

Both inconsistent with natural mass range. But gravitinos may be DM if stable and bound saturated (introduce new scale).

SUSY and Cosmology

SSI03 Lecture 2

Gravitinos from Reheating

- More modern view: gravitino density is diluted by inflation.
- But gravitinos regenerated in reheating. What happens?

$$\sigma_{\rm SM} n \sim T \gg H \sim \frac{T^2}{M_{\rm Pl}} \gg \sigma_{\tilde{G}} n \sim \frac{T^3}{M_{\rm Pl}^2}$$

SM interaction rate >> expansion rate >> \tilde{G} interaction rate

• Thermal bath of SM particles: occasionally they interact to produce a gravitino: $ff \rightarrow f\tilde{G}$

Gravitinos from Reheating

The Boltzmann
 equation:

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \begin{bmatrix} n^2 - n_{eq}^2 \end{bmatrix}$$

Dilution from $f \tilde{G} \to f \bar{f}$ $f \bar{f} \to f \tilde{G}$

• Change variables: $t \to T$ $n \to Y \equiv \frac{n}{s}$

• New Boltzmann
$$\frac{dY}{dT} = -\frac{\langle \sigma_{\tilde{G}} v \rangle}{HTs} n^2 \sim \langle \sigma_{\tilde{G}} v \rangle \frac{T^3 T^3}{T^2 TT^3}$$

• Really simple: Y ~ reheat temperature

SUSY and Cosmology

SSI03 Lecture 2

Bounds on $T_{\rm RH}$

 10^{2} $<\sigma v >$ for important production EΤ processes: 10 $|\mathcal{M}_i|^2 / \frac{g^2}{M^2} \left(1 + \frac{m_{\tilde{g}}^2}{3m_{\pi}^2} \right)$ process im_ج=1 GeV $4(s+2t+2\frac{t^2}{s})|f^{abc}|^2$ $+ q^b \rightarrow \tilde{q}^c + \tilde{G}$ $-4(t+2s+2\frac{s^2}{t})|f^{abc}|^2$ 10 GeV 1 $2s|T_{ii}^{a}|^{2}$ $\tilde{q}_i + g^a \rightarrow q_i +$ $-2t|T^{a}_{ii}|^{2}$ ຊີ ຊີ $+q_i \rightarrow \tilde{q}_j +$ 50 $-2t|T^{a}_{ii}|^{2}$ $+q_i \rightarrow g^a + \tilde{G}$ $-8\frac{(s^2+st+t^2)^2}{st(s+t)}|f^{abc}|^2$ $\tilde{g}^a + \tilde{g}^b \rightarrow \tilde{g}^c + \tilde{G}$ 250 GeV $-4(s+\frac{s^2}{t})|T^a_{ji}|^2$ $q_i + \tilde{g}^a \rightarrow q_j + \tilde{G}$ $-2(t + 2s + 2\frac{s^2}{t})|T_{ji}^a|^2$ $\tilde{q}_i + \tilde{g}^a \to \tilde{q}_j + \tilde{G}$ 0.01 $-4(t+\tfrac{t^2}{s})|T^a_{ji}|^2$ $q_i + \bar{q}_j \longrightarrow \tilde{g}^a + \tilde{G}$ $2(s+2t+2\frac{t^2}{s})|T_{ii}^a|^2$ $+ \bar{\tilde{q}}_i \rightarrow \tilde{g}^a + \tilde{G}$ $T_{\rm RH} < 10^8 - 10^{10} \, {\rm GeV}$; constrains 10-3 inflation, leptogenesis 1010 10^{8} 10⁹ 1011 \tilde{G} DM if bound saturated T_p/GeV (introduce new scale).

Bolz, Brandenburg, Buchmuller (2001)

Gravitinos from Late Decay

- What if gravitinos are diluted by inflation, and the universe reheats to low temperature?
- G not LSP
 G LSP

- No impact implicit assumption of Lecture 1
- More trouble/opportunities

Gravitinos from Late Decay

- Early universe behaves as usual, WIMP freezes out with desired thermal relic density
- A year passes...then

all WIMPs decay to gravitinos

 Gravitinos inherit WIMP density, but are superweakly interacting – superWIMPs

Gravitino cold dark matter again, but now no new scales

Ã

SSI03 Lecture 2

Gravitino Cosmology: Detection

Gravitinos undetectable now. But late decays occur before CMB but after BBN. This can be tested.

Cyburt, Fields, Olive (2003)

SUSY and Cosmology

SSI03 Lecture 2

Gravitino Signals: BBN

- Signals are determined by WIMP: e.g., $\tilde{B} \rightarrow \tilde{G} \gamma$,...
- m_{WIMP} and $m_{\tilde{G}}$ and determine Decay time: τ_{χ} Energy release: $\zeta_{\text{EM}} = \Delta m n_{\tilde{G}} / n_{\gamma}$ $(\Omega_{\tilde{G}} = \Omega_{\text{DM}})$
- BBN excludes shaded regions

Cyburt, Ellis, Fields, Olive (2002)

G DM predicts grid region,
 distortions in precision BBN
 (including low ⁷Li).

SUSY and Cosmology

Gravitino Signals: CMB

- Late decays may also distort the CMB spectrum.
- For $10^5 \text{ s} < \tau < 10^7 \text{ s}$, get " μ distortions": $\frac{1}{e^{E/(kT)-\mu}-1}$
 - μ =0: Planckian spectrum μ ≠0: Bose-Einstein spectrum
- Current bound: |μ| < 9 x 10⁻⁵
 Future (DIMES): |μ| ~ 2 x 10⁻⁶

SUSY and Cosmology

Gravitino Cosmology: Summary

- Gravitinos: many production mechanisms, may be dark matter.
- Interact only gravitationally, so escape all conventional dark matter searches, but...
- Detection possible in BBN, CMB, diffuse photon background, metastable heavy charged particles at colliders, ...

Particle/Cosmo Synergy

- We've seen many SUSY implications for cosmology (and we've omitted many SUSY scenarios, other well-studied possibilities, ideas not yet conceived,...)
- What prospects are there for sorting this out?
- Consider neutralino dark matter (not so optimistic about prospects for baryogenesis, dark energy,...)

Limitations of Separate Approaches

- Dark matter experiments cannot discover SUSY

 can only provide reasonable constraints on mass, interaction strengths
- Colliders cannot discover dark matter

– can only verify $\tau > 10^{-7}$ s, 24 orders of magnitude short of the age of the universe

Relic Density

• Cosmology: $\Omega_{DM} = 0.23 \pm 0.04$. What can HEP tell us?

Relic Density: LHC

 Assume χ ≈ pure Bino, Ĩ_R flavor degenerate

 $\begin{array}{c|c} \chi & & & & \overline{f} \\ & & & & & \\ \chi & & & & & \\ \end{array} \begin{array}{c} f \\ f \\ f \end{array} \end{array}$

- $<\sigma v >$ determined primarily by χ and \tilde{e}_{R} masses (\tilde{e}_{R} light and has large hypercharge)
- Can find Ω_{χ} to ~ 20%. Then try to confirm assumptions.

Drees, Kim, Nojiri, Toya, Hasuko, Kobayashi (2000)

Relic Density: LC

 Ω_{γ} *typically* implies light SUSY:

- Either light sleptons, or
- Mixed gaugino-Higgsino LSP, selight neutralinos and charginos

If sleptons accessible, typically measure masses to ~1%.

Gaugino-ness measured through spectrum or polarized cross sections.

Potential for highly modelindependent measurement of Ω_{λ} to ~ few % at LHC/LC.

Consistency

Particle Physics + standard cosmology → predictions for

 Ω_{χ} Direct detection rates Indirect detection rates

If observations and experiments corroborate each other, we understand the universe back to 10⁻⁸ sec (T ~ 10 GeV) !

[Cf. Big Bang nucleosynthesis at 1 sec ($T \sim 1 \text{ MeV}$)]

Discrepancies

- Thermal relic density need not be the actual relic density (e.g., late decays)
 - The mismatch tells us about the history of the universe between 10^{-8} s < *t* < 1 s
- Detection rates need not be the actual detection rates
 - the mismatch tells us about halo profiles, dark matter velocity distributions,...
- LHC/LC not only may identify DM as SUSY, but also may shed light on "astrophysical" problems

Example: Galactic Halo Profile

- Halo profiles are not wellknown (cuspy, clumpy, ...)
- An indirect dark matter signal is photons from the galactic center:

Flux + LHC/LC → halo profile

Summary

- Particle physics and cosmology both point to new physics at the weak scale
- Neutralino and gravitino cosmology provide rich arenas for exploring the wealth of possibilities
- The golden age of particle physics / astroparticle / cosmology is yet to come!