PARTICLE DARK MATTER CANDIDATES

Jonathan Feng University of California, Irvine 22 March 2007 Beckman Center, NAS Astrophysical Probes of DM

Dark Matter

- Tremendous recent progress: $\Omega_{\rm DM}h^2 = 0.113 \pm 0.009$
- Unambiguous evidence for new particles
- What is it?
 - Not baryonic
 - Not hot
 - Not short-lived
- Here review recent progress:
 - Proliferation of candidates
 - Many as well-motivated as neutralino dark matter, but with completely different implications for structure formation, etc.

Feng

2

Candidates

- Masses and interaction strengths span many, many orders of magnitude
- Diverse motivations
 - DAMA
 - HEAT
 - HESS

. . .

- Small scale structure
- 511 keV photon line

Remarkable "coincidence": particles required for electroweak symmetry breaking ~100 GeV → right amount of dark matter!

- 4

STABILITY

New Particle States

• This all assumes the WIMP is stable

• How natural is this?

LEP

- Large Electron Positron Collider at CERN, 1989-2000
- Confirmed the standard model, stringently constrained effects of new particles

 Problem: new particles should be above ~ 3 TeV, far heavier than ~100 GeV required by electroweak symmetry breaking

SOLUTION

- This assumes new particles mediate interactions at tree-level.
- Simple solution: impose a discrete parity, so all interactions require pairs of new particles.
- This also makes the lightest new particle stable.


```
Cheng, Low (2003); Wudka (2003)
```

• The Cosmological Legacy of LEP:

LEP constraints \leftrightarrow Discrete symmetry \leftrightarrow Stability

- The WIMP paradigm is more natural than ever before
- Dark matter is easier to explain than no dark matter, and with the proliferation of EWSB models has come a proliferation of WIMP possibilities

EXAMPLES

- Supersymmetry
 - Superpartners
 - R-parity
 - Neutralino χ with significant Ω_{DM}

Goldberg (1983); Ellis et al. (1984)

- Universal Extra Dimensions
 - Kaluza-Klein partners
 - KK-parity
 - B^1 ("heavy photon") with significant Ω_{DM}

Appelquist, Cheng, Dobrescu (2000)

Servant, Tait (2002) Cheng, Feng, Matchev (2002)

- Branes
 - Brane fluctuations
 - Brane-parity
 - Branons with significant Ω_{DM}

Cembranos, Dobado, Maroto (2003) Feng

8

WIMPS FROM SUSY

The classic WIMP: neutralinos predicted by supersymmetry

Goldberg (1983), Ellis et al. (1983)

- Supersymmetry: For every known particle X, predicts a partner particle X. Stabilizes weak scale if masses are ~ 100 GeV.
- Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$: neutral, weakly-interacting.
- In many models, χ is the lightest supersymmetric particle and stable. All the right properties for dark matter!

Minimal Supergravity

 $\Omega_{DM}h^2 = 0.113 \pm 0.009$ excludes many possibilities, favors certain models

WIMPS FROM EXTRA DIMENSIONS

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

 Extra spatial dimensions could be curled up into small circles of radius R

 Particles moving in extra dimensions appear as a set of copies of SM particles

New particle masses are integer multiples of

 $m_{\rm KK} = R^{-1}$

Minimal Universal Extra Dimensions

WIMP DETECTION

Correct relic density → Efficient annihilation then
→ Efficient annihilation now (indirect detection)
→ Efficient scattering now (direct detection)

ALTERNATIVES TO WIMPS

- Must DM have weak force interactions?
- Strictly speaking, no the only required DM interactions are gravitational (much weaker than weak)
- But the relic density "coincidence" strongly prefers weak interactions

Is there an exception to this rule?

SuperWIMPs: The Basic Idea

Supersymmetry also predicts gravitinos

Pagels, Primack (1982); Weinberg (1982)

Most typically: mass ~ 100 GeV, couplings ~ $M_W/M_{\rm Pl}$ ~ 10⁻¹⁶

Ĝ LSP

Ĝ not LSP

Assumption of most of literature

 Completely different cosmology and particle physics

SUPERWIMP RELICS

Gravitinos naturally inherit the right density, but interact only gravitationally – they are superWIMPs (also axinos, KK gravitons, quintessinos, etc.)

Feng, Rajaraman, Takayama (2003); Bi, Li, Zhang (2003); Ellis, Olive, Santoso, Spanos (2003); Wang, Yang (2004); Roszkowski et al. (2004); ...

SuperWIMP Detection

- SuperWIMPs evade all conventional dark matter searches
 - Direct detection
 - Indirect detection
- But superweak interactions \rightarrow very late decays $\tilde{l} \rightarrow \tilde{G}l$, $\tilde{\gamma} \rightarrow \tilde{G}\gamma \rightarrow$ observable consequences
 - Small scale structure
 - Big Bang nucleosynthesis
 - CMB μ distortions

STRUCTURE FORMATION

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure while preserving WIMP motivations: warm!
- Typical decay times are $10^5 10^6$ s, but can be arbitrarily long by adjusting $m_{\tilde{G}}$ (metaCDM)
 - Dalcanton, Hogan (2000)
 - Lin, Huang, Zhang, Brandenberger (2001)
 - Sigurdson, Kamionkowski (2003)
 - Profumo, Sigurdson, Ullio, Kamionkowski (2004)
 - Kaplinghat (2005)
 - Cembranos, Feng, Rajaraman, Takayama (2005)
 - Strigari, Kaplinghat, Bullock (2006)
 - Bringmann, Borzumati, Ullio (2006)

CONCLUSIONS

- Many interesting, well-motivated new candidates for particle dark matter
- Cosmological legacy of LEP: stability of a new particle is common feature of many viable particle models
- WIMPs: many new candidates; excellent prospects for direct and indirect dark matter searches, colliders
- SuperWIMPs: warm DM with all the virtues of WIMPs