RECENT DEVELOPMENTS IN DARK MATTER AND IMPLICATIONS FOR COLLIDERS

Fermilab Wine & Cheese
19 June 2009

Jonathan Feng
UC Irvine
EVIDENCE FOR DARK MATTER

• There is now overwhelming evidence that normal (standard model) matter is not all the matter in the Universe:

 Dark Matter: 23% ± 4%
 Dark Energy: 73% ± 4%
 Normal Matter: 4% ± 0.4%
 Neutrinos: 0.2% ($\Sigma m_\nu/0.1eV$)

• To date, all evidence is from dark matter’s gravitational effects. We would like to detect it in other ways to learn more about it.
A PRECEDENT

- In 1821 Alexis Bouvard found anomalies in the observed path of Uranus and suggested they could be caused by dark matter.

- In 1845-46 Urbain Le Verrier determined the expected properties of the dark matter and how to find it. With this guidance, Johann Gottfried Galle discovered dark matter in 1846.

- Le Verrier wanted to call it “Le Verrier,” but it is now known as Neptune, the farthest known planet (1846-1930, 1979-99, 2006-present).
DARK MATTER CANDIDATES

- There are many
- Masses and interaction strengths span many, many orders of magnitude
- Here focus on candidates with mass around $m_{\text{weak}} \sim 100$ GeV

HEPAP/AAAC DMSAG Subpanel (2007)
THE WIMP MIRACLE

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi \chi \leftrightarrow f \bar{f}$$

(2) Universe cools:

$$\chi \chi \rightarrow f \bar{f}$$

(3) χs “freeze out”:

$$\chi \chi \uparrow \rightarrow f \bar{f}$$

Zeldovich et al. (1960s)
THE WIMP MIRACLE

• The resulting relic density is

\[\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4} \]

\[\begin{array}{c}
X \\
\hline
X
\end{array} \quad \begin{array}{c}
f \\
\hline
\bar{f}
\end{array} \]

• For a WIMP, \(m_X \sim 100 \text{ GeV} \) and \(g_X \sim 0.6 \) \(\Rightarrow \Omega_X \sim 0.1 \)

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter
RELIC DENSITY CONSTRAINTS

$\Omega_{DM} = 23\% \pm 4\%$ stringently constrains new physics models

Cosmology excludes many possibilities, favors certain regions with distinctive collider signatures
WIMP DETECTION

Correct relic density \(\rightarrow\) “lower bound” on DM-SM interactions

Efficient annihilation now (Indirect detection)

Efficient scattering now (Direct detection)

Efficient production now (Particle colliders)
DIRECT DETECTION

• WIMP properties
 – $v \sim 10^{-3}$ c
 – Kinetic energy ~ 100 keV
 – Local density ~ 1 / liter

• Detected by nuclear recoil in underground detectors; two leading methods

• Background-free detection
 – Spin-independent scattering is typically the most promising
 – Theory and experiment compared in the $(m_X, \sigma_{\text{proton}})$ plane
 – Expt: CDMS, XENON, …
 – Theory: SUSY region – WHAT ARE WE TO MAKE OF THIS?

[Graph showing cross-section vs. WIMP mass with data points and lines representing experimental and theoretical results.]

CDMS: 2004+2005 (reanalysis) +2008 Ge
XENON10 2007 (Net 136 kg-d)
SuperCDMS (Projected) 25Kg (7-ST@Snolab)
LUX 300 Kg LXe Projection (Jul 2007)
Baltz and Gondolo 2003
Baltz and Gondolo, 2004, Markov Chain Monte Carlos
DARK MATTER VS. FLAVOR PROBLEM

• Squark and slepton masses receive many contributions

• The gravitino mass $m_{\tilde{G}}$ characterizes the size of gravitational effects, which generically violate flavor and CP

• For ~ 100 GeV sfermions, these violate low energy constraints (badly)
 – Flavor: Kaon mixing, $\mu \rightarrow e \gamma$
 – Flavor and CP: ε_K
 – CP: neutron EDM, electron EDM

\[
m_{\tilde{q}}^2 = \begin{pmatrix}
\sim m_G^2 & \sim m_G^2 & \sim m_G^2 \\
\sim m_G^2 & \sim m_G^2 & \sim m_G^2 \\
\sim m_G^2 & \sim m_G^2 & \sim m_G^2
\end{pmatrix}
\]
THE SIGNIFICANCE OF 10^{-44} CM2

- Some possible solutions
 - Set flavor violation to 0 by hand
 - Make sleptons and squarks heavy (few TeV or more)
- The last eliminates many annihilation diagrams, collapses predictions
- Summary: The flavor problem $\Rightarrow \sigma_{SI} \sim 10^{-44}$ cm2
 (focus point SUSY, inverted hierarchy models, more minimal SUSY, 2-1 models, split SUSY,...)
DIRECT DETECTION

Annual modulation: Collision rate should change as Earth’s velocity adds constructively/destructively with the Sun’s.

Drukier, Freese, Spergel (1986)

DAMA: 8σ signal with $T \sim 1$ year, max \sim June 2

2-6 keV

DAMA/NaI (0.29 ton\(\times\)yr) (target mass = 87.3 kg)

DAMA/LIBRA (0.53 ton\(\times\)yr) (target mass = 232.8 kg)
CHANNELING

• DAMA’s result is puzzling, in part because the favored region was considered excluded by others

• This may be ameliorated by
 – Astrophysics
 – Channeling: in crystalline detectors, efficiency for nuclear recoil energy \rightarrow electron energy depends on direction

Gondolo, Gelmini (2005)

• Channeling reduces threshold, shifts allowed region to
 – Rather low WIMP masses (~GeV)
 – Very high σ_{SI} (~10^{-39} cm2)
DAMA AND SUPER-K

• Ways forward
 – Examine channeling
 – Other low threshold direct detection experiments

• Super-K indirect detection
 – DM captured in the Sun
 – Annihilates to neutrinos
 – Neutrinos seen at Super-K

• Comparing apples to oranges? No! The Sun is full, so $\sigma_{SI} \rightarrow$ capture rate \rightarrow annihilation rate
 • Current bound: through-going events, extends to $m_X = 18$ GeV
 • Ongoing analysis: fully contained events, sensitive to $m_X \sim 5$ GeV?

Hooper, Petriello, Zurek, Kamionkowski (2008); Feng, Kumar, Learned, Strigari (2008)
INDIRECT DETECTION

Dark Matter annihilates in _________ to the halo _________

_________ a place

positrons _________, which are detected by _________
some particles PAMELA/ATIC/Fermi…

an experiment
PAMELA AND ATIC 2008

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)
ARE THESE DARK MATTER?

- Must fit spectrum, not violate other constraints (photons, anti-protons, ...)
- Neutralinos in supersymmetry
 - $\chi\chi \rightarrow e^+e^-$ suppressed by angular momentum conservation
 - $\chi\chi \rightarrow WW \rightarrow e^+$ gives softer spectrum, also accompanied by large anti-proton flux
- Kaluza-Klein dark matter in UED
 - $B^1B^1 \rightarrow e^+e^-$ unsuppressed, hard spectrum
 - B^1 couples to hypercharge, $B(e^+e^-) = 20\%$
 - B^1 mass ~ 600-1000 GeV to get right Ω
- BUT: flux is a factor of 100-1000 too big for a thermal relic; requires enhancement
 - astrophysics (very unlikely)
 - particle physics
FERMI AND HESS 2009

- Fermi and HESS do not confirm ATIC: no feature, consistent with background with modified spectral index

- Pulsars can explain PAMELA

 Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008)
 Yuksel, Kistler, Stanev (2008)
 Profumo (2008); Fermi (2009)
BEYOND WIMPS

• The anomalies (DAMA, PAMELA, …) are not easily explained by canonical WIMPs

• Start over: What do we really know about dark matter?
 – All solid evidence is gravitational
 – Also solid evidence against strong and EM interactions

• A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is hidden

 Kobsarev, Okun, Pomeranchuk (1966); many others

• What one seemingly loses
 • Connections to central problems of particle physics
 • The WIMP miracle
 • Signals
CONNECTIONS TO CENTRAL PROBLEMS IN PARTICLE PHYSICS

• We want hidden sectors

• Consider SUSY
 – Connected to the gauge hierarchy problem
 – new sectors are already required to break SUSY

• Hidden sectors appear generically, each has its own
 – particle content
 – mass scale m_X
 – Interactions, gauge couplings g_X
• What can we say about hidden sectors in SUSY?

• Generically, nothing. But the flavor problem motivates models in which squark and slepton masses are determined by gauge couplings (and so flavor blind):

\[m_X \sim g_X^2 \]

(Gauge mediation, anomaly-mediation, …)

• This leaves the relic density invariant!
The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

These models map out the remaining degree of freedom; candidates have a range of masses and couplings, but always the right relic density

The flavor problem becomes a virtue

Naturally accommodates multi-component DM, all with relevant Ω
HOW LARGE CAN HIDDEN SECTORS BE?

• Hidden sectors contribute to expansion rate

• BBN: $N_\nu = 3.24 \pm 1.2$, excludes an identical copy of the MSSM
 Cyburt et al. (2004)

• But this is sensitive to temperature differences; even a factor of 2 makes a hidden MSSM viable

\[g^h_{\text{heavy}} (T^h_{\text{BBN}}) \left(\frac{T^h_{\text{BBN}}}{T_{\text{BBN}}} \right)^4 - \frac{7}{8} \cdot 2 \cdot (N_{\text{eff}} - 3) \leq 2.52 \text{ (95\% CL)} \]
• Hidden DM has no SM gauge interactions, but may interact through non-gauge couplings

• For example, introduce connectors Y with both MSSM and hidden charge

• Y particles mediate both annihilation to and scattering off SM particles
EXAMPLE

• Assume WIMPless DM X is a scalar, add fermion connectors Y, interacting through

\[\mathcal{L} = \lambda_f X \bar{Y}_L f_L + \lambda_f X \bar{Y}_R f_R \]

For f=b, Y’s are b’, t’ with hidden charge
Kribs, Plehn, Spannowsky, Tait (2007)

• Explains DAMA easily
 – \(\lambda_b \sim 0.3-1 \)
 – \(m_X \sim 5 \text{ GeV} \) (WIMPless miracle)
 – \(m_Y \sim 400 \text{ GeV} \) (large \(\sigma_{SI} \))

• Any such DAMA explanation \(\rightarrow \) exotic b’, t’ at Tevatron, LHC
HIDDEN CHARGED DM

How is dark matter stabilized? Conventional answer is by a parity conservation, but there are no such SM examples.

<table>
<thead>
<tr>
<th>MSSM</th>
<th>Hidden, flavor-free MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_W) sparticles, (W, Z, t)</td>
<td>(m_\chi) sparticles, (W, Z, q, l, \tilde{\tau}) (or (\tau))</td>
</tr>
<tr>
<td>~GeV (q, l)</td>
<td></td>
</tr>
<tr>
<td>0 (p, e, \gamma, \nu, \tilde{G})</td>
<td>0 (g, \gamma, \nu, \tilde{G})</td>
</tr>
</tbody>
</table>

- If the hidden sector is a flavor-free MSSM, natural DM candidate is any hidden charged particle, stabilized by exact \(U(1)_{EM} \) symmetry, just like the SM electron.
HIDDEN CHARGED DM

Feng, Kaplinghat, Tu, Yu (2009)

DM with hidden charge requires a re-thinking of the standard cold DM picture:

• Bound states form (and annihilate) in the early Universe \rightarrow relic density

• Sommerfeld enhanced annihilation \rightarrow decays in protohalo

• Compton scattering \(X \gamma^h \rightarrow X \gamma^h \) delays kinetic decoupling \rightarrow small scale structure

• Rutherford scattering \(XX \rightarrow XX \): self-interacting, collisional dark matter
BOUNDS ON COLLISIONAL DM

- Hidden charged particles exchange energy through Rutherford scattering
- Constraints on collisions
 - Bullet cluster
 - Non-spherical halos \rightarrow DM can’t be too collisional
- Consistent with WIMPless miracle for $1 \text{ GeV} < m_{DM} < 10 \text{ TeV}$
- Interesting astrophysics
- Many interesting, related ideas

 Pospelov, Ritz (2007); Hooper, Zurek (2008)
 Ackerman, Buckley, Carroll, Kamionkowski (2008)

Kamionkowski, Profumo (2008), …
CONCLUSIONS

• Rapid experimental progress
 – Direct detection
 – Indirect detection
 – Colliders (LHC)

• Proliferation of new classes of candidates with widely varying properties and implications for particle physics and astrophysics

• In the next few years, many DM models will be stringently tested; we will either see something or be forced to rethink some of our most cherished prejudices