We are living through a golden age in cosmology.

There is now overwhelming evidence that normal (atomic) matter is not all the matter in the Universe:

- Dark Matter: $23\% \pm 4\%$
- Dark Energy: $73\% \pm 4\%$
- Normal Matter: $4\% \pm 0.4\%$
- Neutrinos: $0.2\% \left(\Sigma m_\nu / 0.1 \text{eV} \right)$

To date, all evidence is from dark matter’s gravitational effects. We would like to detect it in other ways to learn more about it.
A PRECEDENT

• In 1821 Alexis Bouvard found anomalies in the observed path of Uranus and suggested they could be caused by dark matter.

• In 1845-46 Urbain Le Verrier determined the expected properties of the dark matter and how to find it. With this guidance, Johann Gottfried Galle discovered dark matter in 1846.

• Le Verrier wanted to call it “Le Verrier,” but it is now known as Neptune, the farthest known planet (1846-1930, 1979-99, 2006-present).
DARK MATTER

Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

Unambiguous evidence for new particles
DARK MATTER CANDIDATES

- The observational constraints are no match for the creativity of theorists.
- Masses and interaction strengths span many, many orders of magnitude, but not all candidates are equally motivated.

HEPAP/AAAC DMSAG Subpanel (2007)
THE WEAK MASS SCALE

• Fermi’s constant G_F introduced in 1930s to describe beta decay

\[n \rightarrow p \ e^- \bar{\nu} \]

• $G_F \approx 1.1 \times 10^5 \text{ GeV}^{-2}$ → a new mass scale in nature

\[m_{\text{weak}} \sim 100 \text{ GeV} \]

• We still don’t understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale
THE WIMP MIRACLE

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi\chi \leftrightarrow \bar{f} f$$

(2) Universe cools:

$$\chi\chi \leftrightarrow \bar{f} f$$

(3) χs “freeze out”:

$$\chi\chi \not\leftrightarrow f f$$

Zeldovich et al. (1960s)
• The amount of dark matter left over is inversely proportional to the annihilation cross section:

\[\Omega_{DM} \sim <\sigma_A v>^{-1} \]

• What is the constant of proportionality? Impose natural relations:

\[\sigma_A = \text{kg}^4/\text{m}^2 \quad g \sim 1 \quad \Rightarrow \quad \Omega_{DM} \sim m^2 \]

Remarkable “coincidence”: \(\Omega_{DM} \sim 0.1 \) for \(m \sim 100 \text{ GeV} – 1 \text{ TeV} \); particle physics independently predicts particles with the right density to be dark matter
WIMPS FROM SUPERSYMMETRY

The classic WIMP: neutralinos predicted by supersymmetry

Goldberg (1983); Ellis et al. (1983)

Supersymmetry: extends rotations/boosts/translations, string theory, unification of forces,… For every known particle \(X \), predicts a partner particle \(\tilde{X} \)

Neutralino \(\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}u, \tilde{H}d) \)

Particle physics alone \(\rightarrow \) \(\chi \) is lightest supersymmetric particle, stable, mass \(\sim \) 100 GeV. All the right properties for WIMP dark matter!
$\Omega_{DM} = 23\% \pm 4\%$ stringently constrains models

Cosmology excludes many possibilities, favors certain regions

Focus point region

Co-annihilation region

Bulk region

Yellow: pre-WMAP

Red: post-WMAP
WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

Efficient annihilation now (Indirect detection)

Efficient scattering now (Direct detection)

Efficient production now (Particle colliders)
INDIRECT DETECTION

Dark Matter annihilates in __________ to the halo __________ to a place
positrons __________, which are detected by PAMELA/ATIC/Fermi...
some particles __________ an experiment

PAMELA
ATIC
Fermi
RECENT DATA

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)
ARE THESE DARK MATTER?

- Energy spectrum shape consistent with some dark matter candidates

- Flux is a factor of 100-1000 too big for a thermal relic; requires
 - Enhancement from astrophysics (very unlikely)
 - Enhancement from particle physics
 - Alternative production mechanism

- No excess seen in anti-protons

- Pulsars can explain PAMELA

 Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008)
 Yuksel, Kistler, Stanev (2008); Profumo (2008)
 Fermi-LAT Collaboration (2009)
DIRECT DETECTION

- WIMP properties:
 \[v \sim 10^{-3} \ c \]
 Kinetic energy \(\sim 100 \) keV
 Local density \(\sim 1 / \) liter

- Detected by recoils off ultra-sensitive underground detectors

- Area of rapid progress (CDMS, XENON, …)

- Theory predictions vary, but many models \(\rightarrow 10^{-44} \) cm²
DIRECT DETECTION: DAMA

Annual modulation: Collision rate should change as Earth’s velocity adds constructively/destructively with the Sun’s.

Drukier, Freese, Spergel (1986)

DAMA: 8σ signal with $T \sim 1$ year, max \sim June 2
CHANNELING

• DAMA’s result is puzzling, in part because the favored region was considered excluded by others

• This may be ameliorated by
 – Astrophysics
 – Channeling: in crystalline detectors, efficiency for nuclear recoil energy \rightarrow electron energy depends on direction

 Gondolo, Gelmini (2005)

• Channeling reduces threshold, shifts allowed region to
 – Rather low WIMP masses (~GeV)
 – Very high σ_{SI} ($\sim 10^{-39}$ cm2)
PARTICLE COLLIDERS

LHC: $E_{\text{COM}} = 14$ TeV, 10^6-10^8 top quarks/yr

[Tevatron: $E_{\text{COM}} = 2$ TeV, 10^2-10^4 top quarks/yr]
WHAT THEN?

• What LHC actually sees:
 – E.g., \(\tilde{q}\tilde{q} \) pair production
 – Each \(\tilde{q} \rightarrow \) neutralino \(\chi \)
 – 2 \(\chi \)'s escape detector
 – missing momentum

• This is not the discovery of dark matter
 – Lifetime \(> 10^{-7} \) s \(\rightarrow \) \(10^{17} \) s?
THE EXAMPLE OF BBN

- Nuclear physics \rightarrow light element abundance predictions
- Compare to light element abundance observations
- Agreement \rightarrow we understand the universe back to
 \[T \sim 1 \text{ MeV} \]
 \[t \sim 1 \text{ sec} \]
DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation
- How well can we do?
Contributions to Neutralino WIMP Annihilation

Jungman, Kamionkowski, Griest (1995)
RELIC DENSITY DETERMINATIONS

% level comparison of predicted Ω_{collider} with observed Ω_{cosmo}

1 Jun 09
Feng 23
IDENTIFYING DARK MATTER

Congratulation! You’ve discovered the identity of dark matter and extended our understanding of the Universe to $T=10$ GeV, $t=1$ ns (Cf. BBN at $T=1$ MeV, $t=1$ s)

Are Ω_{collider} and Ω_{cosmo} identical?

Yes

Which is bigger?

Ω_{cosmo}

No

Ω_{collider}

Did you make a mistake?

Yes

No

Can you discover another particle that contributes to DM?

Yes

No

Can you identify a source of entropy production?

Yes

No

Does it account for the rest of DM?

Yes

No

Can this be resolved with some non-standard cosmology?

Yes

No

Calculate the new Ω_{hep}

Does it decay?

Yes

No

Think about dark energy

Yes

No

Are you sure?

Yes

No

1 Jun 09
BEYOND WIMPS

• Dark matter has been detected only through gravity

• But the WIMP miracle is our prime reason to expect progress, and it seemingly implies that dark matter is
 – Weakly-interacting
 – Cold
 – Collisionless

Are all WIMP miracle-motivated candidates astrophysically equivalent?

• No! Recently, have seem many new classes of candidates. Some preserve the motivations of WIMPs, but have qualitatively different implications
SuperWIMPs naturally inherit the right density; share all the motivations of WIMPs, but are much more weakly interacting.

SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

- Suppose there is a superweakly-interacting particle (superWIMP) lighter than the WIMP
- WIMPs freeze out as usual
- But then all WIMPs decay to superWIMPs! In the canonical example of gravitinos, lifetime is

 \[
 M_{\text{Pl}}^2/M_w^3 \sim \text{seconds to months}
 \]

SuperWIMPs naturally inherit the right density; share all the motivations of WIMPs, but are much more weakly interacting.
CHARGED PARTICLE TRAPPING

- SuperWIMPs are produced by decays of metastable particles, which can be charged.

- Charged metastable particles will be obvious at colliders, can be trapped and moved to a quiet environment to study their decays.

- Can catch 1000 per year in a 1m thick water tank.

Feng, Smith (2004)
De Roeck et al. (2005)
WARM SUPERWIMPS

- SuperWIMPs are produced in late decays with large velocity (0.1c – c)
- Suppresses small scale structure, as determined by λ_{FS}, Q
- Warm DM with cold DM pedigree

Dalcanton, Hogan (2000)
Lin, Huang, Zhang, Brandenberger (2001)
Sigurdson, Kamionkowski (2003)
Profumo, Sigurdson, Ullio, Kamionkowski (2004)
Kaplinghat (2005)
Cembranos, Feng, Rajaraman, Takayama (2005)
Strigari, Kaplinghat, Bullock (2006)
Bringmann, Borzumati, Ullio (2006)
In some well-known supersymmetric models, hidden sectors contain particles with $m_X \sim g_X^2$.

This leaves the relic density invariant

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

“WIMPless Miracle”: dark matter candidates have a range of masses/couplings, but always the right relic density.
HIDDEN DM SIGNALS

• Hidden DM may have only gravitational effects, but still interesting: e.g., it may have hidden charge, Rutherford scattering \(\rightarrow \) self-interacting DM

 Feng, Kaplinghat, Tu, Yu (2009)

• Alternatively, hidden DM may interact with normal matter through non-gauge interactions

\[X \rightarrow \lambda \rightarrow f \]

\[X \rightarrow \lambda \rightarrow f \]

• Many new, related ideas

 Pospelov, Ritz (2007); Hooper, Zurek (2008)
 Ackerman, Buckley, Carroll, Kamionkowski (2008)
CONCLUSIONS

• Particle Dark Matter
 – Central topic at the interface of cosmology and particles
 – Both cosmology and particle physics \(\rightarrow\) weak scale \(\sim 100\) GeV

• Candidates
 – WIMPs: Many well-motivated candidates
 – SuperWIMPs, WIMPless dark matter: Similar motivations, but qualitatively new possibilities (warm, collisional, only gravitationally interacting)
 – Many others

• LHC collisions begin in 2009-10, direct and indirect detection, astrophysical probes are improving rapidly – this field will be transformed soon