LHC PROSPECTS FOR COSMOLOGY

Jonathan Feng University of California, Irvine COSMO 09, CERN 7 September 2009

LARGE HADRON COLLIDER

E_{COM} top quark pairs

Tevatron 2 TeV 7000 [L/fb⁻¹]

7 TeV 10⁴ [L/100 pb⁻¹] LHC 14 TeV 10⁷ [L/10 fb⁻¹]

LHC PHYSICS

- Higgs Boson
- Particle Physics Beyond the Standard Model
 - Supersymmetry
 - Extra Dimensions
 - 4th Generation Quarks and Leptons
 - New Forces
 - ...
- Cosmology

. . .

- Dark Matter
- Dark Energy
- Baryogenesis/Leptogenesis

THE WIMP MIRACLE

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p \ e^- \overline{\nu}$

• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

 $m_{weak} \sim 100 \text{ GeV}$

 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale

THE WIMP MIRACLE

 Assume a stable weak-scale particle exists. The resulting relic density is

- For a WIMP, $m_X \sim 100$ GeV and $g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$
- Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then

Efficient scattering now (Direct detection)

DIRECT WIMP PRODUCTION

- $f \overline{f} \rightarrow \chi \chi$ This is invisible
- $f \overline{f} \rightarrow \chi \chi \gamma, \chi \chi j$ Mono-photon, monojet signal

- Signal may be detectable at a Linear e⁺e⁻ Collider

Birkedal, Matchev, Perelstein (2004)

– But not at the LHC: swamped by $q \overline{q} \rightarrow j Z, Z \rightarrow v \overline{v}$

Feng, Su, Takayama (2005)

• WIMP studies at the LHC are therefore highly model-dependent

INDIRECT WIMP PRODUCTION

• The classic WIMP: neutralinos from supersymmetry

Ellis et al. (1983); Goldberg (1983)

- Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$
- Produced in qq̃ pair production
 - − Each \tilde{q} → neutralino χ
 - -2χ 's escape detector
 - missing transverse momentum, energy

- For quantitative studies
 - pick a specific SUSY model, for example, mSUGRA
 - try to abstract general lessons
- $\Omega_{DM} = 23\% \pm 4\%$ stringently constrains models

Assuming standard Big Bang, cosmology excludes many possibilities, favors certain regions

LHC, FP REGION, DIRECT DETECTION

- LHC with 1-10 fb⁻¹ probes all but the far focus point region
- FP (mixed gaugino-Higgsino) region $\rightarrow \sigma_{SI} \sim 10^{-44} \text{ cm}^2$
- Probed by direct detection soon (CDMS, XENON, LUX, ...)

WHAT IF THE LHC PRODUCES WIMPS?

This is not the discovery of dark matter

- Particle leaves the detector: Lifetime > 10^{-7} s
- Particle is DM candidate: Lifetime > 10^{17} s What else can be done?

THE EXAMPLE OF BBN

- Nuclear physics → light element abundance predictions
- Compare to light element abundance observations
- Agreement → we understand the universe back to

t ~ 1 sec

DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation

• How well can we do?

NEUTRALINO ANNIHILATION

Jungman, Kamionkowski, Griest (1995)

RELIC DENSITY DETERMINATIONS

% level comparison of predicted Ω_{collider} with observed Ω_{cosmo}

BEYOND WIMPS

- WIMP characteristics
 - Colliders: missing E_T signals at colliders
 - Astroparticle physics: interesting direct and indirect detection signals
 - Astrophysics: cold, collisionless
- Is this true of all dark matter candidates? No.
 Is this true for all EWSB DM candidates? No!
 Is this true for all WIMP miracle-inspired candidates? No!!
- There are many other classes of candidates that preserve some (or even all) of the theoretical motivations of WIMPs, but have qualitatively different implications. In the rest of this talk, I will discuss a few examples.

GRAVITINOS

- No more exotic than neutralinos SUSY: graviton $G \rightarrow$ gravitino \tilde{G}
- Mass: eV 100 TeV
- Interactions: Gravitinos G̃ couple particles to their superpartners

TeV gravitinos couple gravitationally; light gravitinos couple more strongly

LIGHT GRAVITINOS

- The original SUSY DM scenario
 - Universe cools from high temperature
 - gravitinos decouple while relativistic
 - − $n_{\tilde{G}} \sim n_{\text{thermal}}$, $\Omega_{\tilde{G}} h^2 \approx 0.1 \text{ (m}_{\tilde{G}} / 80 \text{ eV)}$ (cf. neutrinos)

Pagels, Primack (1982)

- This minimal scenario is now excluded
 - Ω_{*G̃*} $h^2 \approx 0.1 \rightarrow m_{\tilde{G}} \approx 80 \text{ eV}$
 - Gravitinos not too hot $\rightarrow m_{\tilde{G}}$ > few keV

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005) Seljak, Makarov, McDonald, Trac (2006)

• Two ways out

- Λ WDM: $m_{\tilde{G}}$ > few keV. Gravitinos are all the DM, but thermal density is diluted by low reheating temperature, late entropy production, ...
- Λ WCDM: m_{\tilde{G}} < 16 eV. Gravitinos are only part of the DM, mixed warm-cold scenario

LIGHT GRAVITINOS AT THE LHC

- m_{G̃} → τ(χ → γG̃); remarkably, this lifetime difference is observable at colliders!
- m_Ğ > few keV:
 Delayed photon signatures
- m_Ğ < 16 eV:
 Prompt photon signatures

CDF Run II Preliminary

HEAVY GRAVITINOS

Mass ~ 100 GeV; Interactions: ~ gravitational (superweak)

Ĝ not LSP

Assumption of most of literature

• Ĝ LSP

 Completely different cosmology and particle physics

SUPERWIMP RELICS

- SuperWIMPs share all WIMP motivations
 - − Naturally correct relic density: $m_{\tilde{G}} \sim m_{WIMP} \rightarrow \Omega_{\tilde{G}} \sim \Omega_{WIMP} \sim 0.1$
 - Same theoretical frameworks: ~1/2 of the parameter space (also axinos, KK gravitons, ...)

SUPERWIMP IMPLICATIONS

Jedamzik talk

Lamon, Durrer (2005)

 No direct, indirect signals, but potential cosmological signals
 – BBN

- CMB

– warm DM

Kaplinghat (2005) Cembranos, Feng, Rajaraman, Takayama (2005)

• BBN \rightarrow decaying WIMP $\neq \chi$

Feng, Rajaraman, Takayama (2003) Feng, Su, Takayama (2004)

• Decaying slepton mass > 100 GeV, lifetime $\sim 1 - 10^7$ s

CHARGED PARTICLE TRAPPING

- SuperWIMP DM implies charged metastable particles, far more spectacular than misssing E_T (1st year LHC discovery)
- Can collect these particles and study their decays
- Several ideas
 - Catch sleptons in a 1m thick water tank (up to 1000/year)

Feng, Smith (2004)

Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)

Dig sleptons out of detector hall walls

De Roeck et al. (2005)

WHAT WE COULD LEARN FROM CHARGED PARTICLE DECAYS

$$\tau(\tilde{l} \to l\tilde{G}) = \frac{6}{G_N} \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^5} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^{-4}$$

- Measurement of τ , $m_{\tilde{l}}$ and $E_l \rightarrow m_{\tilde{G}}$ and G_N
 - Probes gravity in a particle physics experiment
 - Measurement of G_N on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant

Hamaguchi et al. (2004); Takayama et al. (2004)

WIMPLESS DARK MATTER

- DM may be hidden (no SM gauge interactions); generically, anything is possible
- But in SUSY models motivated by flavor problem (GMSB, ...), superpartner masses are determined by gauge couplings: $m_X \sim g_X^2$
- This implies that stable particles in hidden sectors have the same relic density $\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{q_Y^4}$
- "WIMPless Miracle": hidden DM candidates with a range of masses/ couplings, but always the right Ω

Feng, Kumar (2008); Feng, Tu, Yu (2008)

HIDDEN DM SIGNALS

 Hidden DM may have only gravitational effects, but still interesting: e.g., it may have hidden charge and be self-interacting through Rutherford scattering

Feng, Kaplinghat, Tu, Yu (2009)

 Alternatively, hidden DM X may have Yukawa couplings through connectors Y with normal matter, explain DAMA

 Y particles will appear at LHC as exotic 4th generation quarks, windows on the hidden sector; many related ideas

CONCLUSIONS

- WIMP miracle → fascinating interaction of LHC with cosmology; many specific realizations with greatly varying phenomenology and implications
- WIMPs → missing E_T, but also many other, even more striking, possibilities
 - Prompt or delayed photons
 - Heavy charged particles
 - Connector particles to hidden sectors
- LHC begins in 2009-10, may have far-reaching implications soon