RECENT DEVELOPMENTS
IN DARK MATTER:
THEORY PERSPECTIVE

Jonathan Feng, UC Irvine

2010 Phenomenology Symposium
University of Wisconsin
12 May 2010
TOPICS

• PAMELA, FERMI, … ↔ BOOSTED WIMPS

• CDMS, XENON, … ↔ WIMPS

• DAMA, COGENT, … ↔ LIGHT WIMPS

For more, see “Dark Matter Candidates from Particle Physics and Methods of Detection,” 1003.0904, Annual Reviews of Astronomy and Astrophysics
• Assume a new (heavy) particle X is initially in thermal equilibrium

• Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

• $m_X \sim 100$ GeV, $g_X \sim 0.6 \Rightarrow \Omega_X \sim 0.1$

• Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter
WIMP STABILITY

- Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

 Cheng, Low (2003); Wudka (2003)

- This is a general argument for a stable weak-scale particle

- In specific contexts, this may be augmented by additional arguments. E.g., in SUSY, proton decay → R-parity.
WIMP DETECTION

Correct relic density \rightarrow Lower bound on DM-SM interaction

Efficient annihilation now
(Indirect detection)

Efficient scattering now
(Direct detection)

Efficient production now
(Particle colliders)
INDIRECT DETECTION

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

12 May 10
ARE THESE DARK MATTER?

• Astrophysics can explain PAMELA

 Zhang, Cheng (2001)
 Hooper, Blasi, Serpico (2008)
 Yuksel, Kistler, Stanev (2008)
 Profumo (2008); Fermi (2009)

• For dark matter, there is both good and bad news

• Good: the WIMP miracle motivates excesses at ~100 GeV – TeV

• Bad: the WIMP miracle also tells us that the annihilation cross section should be a factor of 100-1000 too small to explain these excesses. Need enhancement from
 – astrophysics (very unlikely)
 – particle physics
If dark matter X is coupled to a hidden force carrier ϕ, it can then annihilate through $XX \rightarrow \phi \phi$

At freezeout: $v \sim 0.3$, only 1st diagram is significant, $\sigma = \sigma^{th}$

Now: $v \sim 10^{-3}$, all diagrams significant, $\sigma = S\sigma^{th}$, $S \sim \pi \alpha_X/v$, boosted at low velocities

If $m_X \sim 2$ TeV, $S \sim 1000$, seemingly can explain excesses, get around WIMP miracle predictions

SOMMERFELD ENHANCEMENT

SOMMERFELD (1931)
Hisano, Matsumoto, Nojiri (2002)

Cirelli, Kadastik, Raidal, Strumia (2008)
CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

Feng, Kaplinghat, Yu (2009)

• Unfortunately, large S requires large α_X, but strongly-interacting DM does not have the correct relic density

• More quantitatively: for $m_X = 2$ TeV, $S \sim 1000 \sim \pi \alpha_X / v$,

 $v \sim 10^{-3} \rightarrow \alpha_X \sim 1 \rightarrow \Omega_X \sim 0.001$

• Alternatively, requiring $\Omega_X \sim 0.25$, what is the maximal S?

• Complete treatment requires including
 – Resonant Sommerfeld enhancement
 – Impact of Sommerfeld enhancement on freeze out
FREEZE OUT WITH SOMMERFELD ENHANCEMENT

- Sommerfeld enhancement \rightarrow many interesting issues

 Dent, Dutta, Scherrer (2009)
 Zavala, Vogelsberger, White (2009)

- To maximize S, turn knobs in the most optimistic direction

 - Assume $XX \rightarrow \phi\phi$ is the only annihilation channel
 - Delay kinetic decoupling as much as possible
 - Stop annihilations when the velocity distribution becomes non-thermal
PAMELA, Fermi fits: Bergstrom, Edsjo, Zaharias (2009)

$m_\phi = 0.25$ GeV

$T_{kd} = T_{kd}^e$
WAYS OUT

• Best fit region excluded by an order of magnitude

• Astrophysical uncertainties
 • Local density, small scale structure
 • Cosmic ray propagation, proton contamination in PAMELA,…

• Particle physics
 • More complicated Sommerfeld models (smaller boosts required, but generically tighter bounds)
 • Resonant annihilation
 Feldman, Liu, Nath (2008); Ibe, Murayama, Yanagida (2008); Gou, Wu (2009)
 • Non-thermal DM production (e.g., Winos)
 Grajek et al. (2008); Feldman, Kane, Lu, Nelson (2010); Cotta et al. (2010)
 • DM from decays
 Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran (2008)
DIRECT DETECTION

- The big picture
- Strongly-interacting window now closed

Mack, Beacom, Bertone (2007)

Albuquerque, de los Heros (2010)
DIRECT DETECTION

Aprile et al. (2010)
THE SIGNIFICANCE OF 10^{-44} CM2

- New weak scale particles generically create many problems
- For example: K-\bar{K} mixing

Three possible solutions
 - Alignment: θ small
 - Degeneracy (e.g. gauge mediation): typically not compatible with neutralino DM, because neutralinos decay to gravitinos
 - Decoupling: $m > \text{few TeV}$
THE SIGNIFICANCE OF 10^{-44} cm^2

- Consider decoupling

- Remaining diagram depends on 3 parameters: M_1, M_2, μ ($\tan \beta$)

- Impose gaugino mass unification, $\Omega h^2 = 0.11$

- One parameter left: m_χ

- Predictions collapse to a line
STATUS OF SUSY

10^{-43} cm^2

10^{-44} cm^2

No DM

DM
LIGHT WIMPS

- ~10 GeV DM may explain DAMA

- This region is now tentatively supported by CoGeNT (2010), disfavored by XENON100 (2010)

- Conventional WIMPs?
 - Low masses: unusual, but not so difficult (e.g., neutralinos w/o gaugino mass unification)
 - High cross sections: very difficult (chirality flip implies large suppression)

Dreiner et al. (2009)

Bottino et al. (2006)

Kuflik, Pierce, Zurek (2010)
LIGHT WIMP MODELS

• Mirror matter

• Asymmetric DM: relate DM number asymmetry to baryon number asymmetry, so $m_X / m_p \sim \rho_X / \rho_p \sim 5$

• WIMPless DM

• Other candidates, related issues

Foot (2008)

Talk of An

Talks of Kumar, Badin, Yeghiyan, Fan, Sessolo

Talks of Ibe, McCaskey, Ralston
• Thermal relics in a hidden sector with mass m_X and gauge coupling g_X

The thermal relic density constrains only one combination of g_X and m_X:

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

These models map out the remaining degree of freedom

• This decouples the WIMP miracle from WIMPs

Feng, Kumar (2008); Feng, Tu, Yu (2008)
THE WIMPLESS MIRACLE

• Can this be arranged? Consider GMSB

\[m \sim \frac{g^2}{16\pi^2} \frac{F}{M} \]

\[m_X \sim \frac{g_X^2}{16\pi^2} \frac{F}{M} \]

Superpartner masses \(\sim \) gauge couplings squared

• Cosmology

\[\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M} \]

\(\Omega \) depends only on the SUSY Breaking sector:

\[\Omega_X \sim \Omega_{\text{WIMP}} \sim \Omega_{\text{DM}} \]

• This is generic in SUSY (AMSB, gMSB, no-scale SUGRA,…): is this what the flavor problem is telling us?
WIMPLESS SIGNALS

- Hidden DM may interact with normal matter through non-gauge interactions

![Diagram showing interactions between MSSM, Connector, SUSY Breaking, and Hidden X with y and q]
WIMPLESS DIRECT DETECTION

- The DAMA/CoGeNT region is easy to reach with WIMPless DM

- E.g., assume WIMPless DM X is a scalar, Y is a fermion, interact with b quarks through
 \[\lambda_b (X Y_L b_L + X Y_R b_R) + m_Y Y_L Y_R \]

- Naturally correct mass, cross section
 - \(m_X \sim 5 - 10 \text{ GeV} \) (WIMPless miracle)
 - Large \(\sigma_{SI} \) for \(\lambda_b \sim 0.3 - 1 \) (flip chirality on heavy Y propagator)
FUTURE PROSPECTS

• More direct detection, of course, but also

• **SuperK, IceCube**

 Hooper, Petriello, Zurek, Kamionkowski (2009)
 Feng, Kumar, Strigari, Learned (2009)
 Kumar, Learned, Smith (2009)
 Barger, Kumar, Marfatia, Sessolo (2010)

• **Light DM in Upsilon decays**

 McKeen (2008)
 Yeghiyan (2009)
 Badin, Petrov (2010)

• **Tevatron and LHC can find connector particles: colored, similar to 4th generation quarks**
EXOTIC 4TH QUARKS AT LHC

Direct searches, perturbativity \(\rightarrow 300 \text{ GeV} < m_Y < 600 \text{ GeV} \)

The entire region can be excluded by 10 TeV LHC with 300 \(\text{pb}^{-1} \) (~7 TeV LHC with 1 \(\text{fb}^{-1} \)); significant discovery prospects

12 May 10
CONCLUSIONS

• DM searches are progressing rapidly on all fronts
 – Direct detection
 – Indirect detection
 – LHC

• Proliferation of DM candidates, but many are tied to the weak scale

• In the next few years, these DM models will be stringently tested