FASER:
FORWARD SEARCH EXPERIMENT AT THE LHC

UCLA
Jonathan Feng, UC Irvine
Based on 1708.09389 and 1710.09387 with

Iftah Galon Felix Kling Sebastian Trojanowski

21 November 2017
LAMPPOST LANDSCAPE

Already Discovered

Weakly Interacting Light Particles

Strongly Interacting Heavy Particles

Impossible to Discover

Coupling Strength

10^{-3}

10^{-6}

MeV

GeV

TeV

Mass

21 Nov 2017
STRONGLY INTERACTING, HEAVY PARTICLES

- The traditional target for new physics searches: the high energy frontier

- Motivations: WIMP miracle, gauge hierarchy, anomalies (muon g-2, ...)
WEAKLY INTERACTING, LIGHT PARTICLES

• A new target for new physics searches

• Similar motivations: WIMPless miracle, anomalies (muon g-2, \(^{8}\)Be, ...)

Weakly interacting, light particles can be thermal relic dark matter, resolve anomalies, open new possibilities for experimental detection
THE IDEA

• New physics searches at the LHC focus on high p_T. This is appropriate for heavy, strongly interacting particles
 $-\sigma \sim \text{fb to pb} \rightarrow N \sim 10^3 - 10^6$, produced \simisotropically

• However, if new particles are light and weakly interacting, this may be completely misguided. Instead should exploit
 $-\sigma_{\text{inel}} \sim 100 \text{ mb} \rightarrow N \sim 10^{17}$, $\theta \sim \Lambda_{\text{QCD}} / E \sim 250 \text{ MeV} / \text{TeV} \sim \text{mrad}$

• We propose a small, inexpensive experiment, FASER, to be placed in the very forward region of ATLAS/CMS, a few 100m downstream of the IP, and analyze its discovery potential
THE LIFETIME FRONTIER

Increasing worldwide interest. At CERN: LHCb, NA62, SHiP, MilliQan, MATHUSLA, Codex-b, ...

FASER: “The acronym recalls another marvelous instrument that harnessed highly collimated particles and was used to explore strange new worlds.”
OUTLINE

• Very Forward Region Infrastructure
• New Physics Example: Dark Photons
• Signal
• Backgrounds
• Results
• New Physics Example: Dark Higgs Bosons
• Summary and Outlook
LHC ring consists of 8 straight 545 m intersections and 8 curved arcs. The infrastructure common to IP1 and IP5 (also have CASTOR, LHCf, ALFA, TOTEM, etc.):

- **TAS**: front quadrupole absorbers ($\theta > 0.85$ mrad)
- **D1**: dipole magnet, splits beams, deflects μ, p, ...
- **TAN**: neutral target absorbers (n, γ)

Note the extreme difference in longitudinal and transverse scales.
FASER LOCATIONS

• We want to place FASER along the beam *collision* axis
 - Far location: 400 m from IP, after beams curve, 2.6 m from the beams
 - Near location: 150 m, after TAN, between the beams

• ATLAS/CMS beams cross at 285 μrad in vertical/horizontal plane \rightarrow shifts far (near) location by 5.7 (2.1) cm

• HL-LHC: 285\rightarrow590 μrad, TAN\rightarrowTAXN moves forward 10 m,...
 We assume current parameters, FASER is exactly on-axis
SERVICE TUNNEL TI18

SPS

Point 1

Point 1.8

ATLAS
DARK PHOTONS

• Dark matter is our most solid evidence for new particles. In recent years, the idea of dark matter has been generalized to dark sectors.

• Dark sectors motivate light, weakly coupled particles (WIMPless miracle, SIMP miracle, small-scale structure, ..).

• A prominent example: vector portal, leading to dark photons.

\[\epsilon F_{\mu\nu} F_{\text{hidden}}^{\mu\nu} \]

• The resulting theory contains a new gauge boson A' with mass $m_{A'}$ and ϵQ_f couplings to SM fermions f.
DARK PHOTON PROPERTIES

- Produced in meson decays, e.g.,
 \[B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma), \]
 and also through dark bremsstrahlung \(pp \to p A' X \) and direct QCD processes \(qq \to A' X \) (requires pdfs at low \(Q^2, x \))

- Travels long distances through matter without interacting, decays mainly to \(e^+e^- \) (and \(\mu^+\mu^- \) for \(m_{A'} > 2 m_\mu \))

 \[\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) \ B_e \left[\frac{10^{-5}}{\epsilon} \right]^2 \left[\frac{E_{A'}}{\text{TeV}} \right] \ E_{A'} \gg m_{A'} \gg m_e \]

- The essential tension: low \(\epsilon \to \) low event rate, high \(\epsilon \to \) decays too fast. Is there a happy middle ground?
DARK PHOTON STATUS

• Lots of unconstrained parameter space with
 \[m_{A'} > 10 \text{ MeV} \]
 \[\varepsilon \sim 10^{-6} - 10^{-3} \]

• E.g., 2 representative model points: \((m_{A'}, \varepsilon) =\)

 \((20 \text{ MeV}, 10^{-4})\)
 \((100 \text{ MeV}, 10^{-5})\)

PION PRODUCTION AT THE LHC

- Forward particle production simulations and models have been greatly constrained by LHC data
- EPOS-LHC, SIBYLL 2.3, QGSJETII-04 agree very well
- Enormous event rates ($\sigma_{\text{inel}} \sim 70 \text{ mb}, N_{\text{inel}} \sim 10^{17}$), production is peaked at $p_T \sim \Lambda_{\text{QCD}}$, but with significant width
DARK PHOTON PRODUCTION

• Consider π^0 decay, η decay, dark bremsstrahlung

• Results for 1st model point: $(m_{A'}, \epsilon) = (20 \text{ MeV}, 10^{-4})$

• From $\pi^0 \rightarrow \gamma A'$, $E_{A'} \sim E_\pi / 2$ (no surprise)

• But note rates: even after ϵ^2 suppression, $N_{A'} \sim 10^8$; LHC may be a dark photon factory!
DARK PHOTONS IN THE FAR DETECTOR

• Now require dark photons to decay in the far detector: consider cylindrical detector with volume ~1 m²

\[\text{on-axis: } L=400 \text{m} \]

\[\Delta = 10 \text{ m} \]

outer radius \(R_{\text{out}} = 20 \text{ cm} \)

• Only the highest energy A’s survive, but there are still many of them, and they are highly collimated
SIGNAL DEPENDENCE ON DETECTOR SPECS

- For dark photons, moving the detector closer helps
- At the far location, $R = 20$ cm captures almost all the A'
DARK PHOTONS IN THE NEAR DETECTOR

• Now require dark photons to decay in the near detector: detector volume only ~0.1 m²! on-axis: $L = 150\text{m}$

- Moving the detector closer \rightarrow more dark photons decay in the detector, even though the near detector is much smaller

$\Delta = 5\text{m}$

outer radius $R_{out} = 4\text{cm}$
BACKGROUNDs

- The signal is two simultaneous, opposite-sign, highly-energetic (E > 500 GeV) charged particles that start in the detector at a vertex and point back to IP → a tracker-based technology

- The opening angle is $\theta_{ee} \sim m_{A'} / E \sim 10 \mu$rad. After traveling ~1 m, this leads to 10 μm separation, too small to resolve, so we need a small magnetic field

$$h_B \approx \frac{e c \ell^2}{E} B = 3 \text{ mm} \left[\frac{1 \text{ TeV}}{E} \right] \left[\frac{\ell}{10 \text{ m}} \right]^2 \left[\frac{B}{0.1 \text{ T}} \right]$$

- Many backgrounds are eliminated simply by virtue of FASER’s location. Cosmic ray background is negligible, charged particles from IP are bent away by D1 magnet

- Leading backgrounds: neutrino-induced backgrounds and beam-induced backgrounds
NEUTRINO-INDUCED BACKGROUND

- If $\pi^+ \rightarrow \mu \nu$ before D1 magnet, resulting neutrinos can propagate into FASER, interact through

\[\nu_\ell N \rightarrow \ell X \quad \text{and} \quad \nu N \rightarrow \mu^\pm \pi^{\mp} X \]

- Coincident single tracks that fake double tracks: negligible

- Second process eliminated by requiring no other activity, tracks start in the detector and have high and symmetric energies

- $\nu \rightarrow K_{S,L} \rightarrow 2$ charged tracks also negligible with same cuts
BEAM-INDUCED BACKGROUNDS: FAR LOCATION

- Depends on exact configuration. At 400m, line of sight is 2.6 m from beam, outside tunnel. With sufficient shielding, hadrons, electrons are stopped, only muons are relevant.

- A 2013 ATLAS study based on 2011 data can be used to determine muon background at far location. Requiring $E_\mu > 100$ GeV, the flux is
 \[
 \Phi \sim 10^{-3} \text{ Hz cm}^{-2}
 \]

- The muon arrival times correspond to bunch crossings. Accounting for the bunch structure and assuming a timing resolution of 100 (10) ps, get ~ 0.1 (~ 0.01) coincident $\mu^+\mu^-$ pairs in 1 LHC year.

- No significant backgrounds identified for far location.
BEAM-INDUCED BACKGROUNDs: NEAR LOCATION

• Far more challenging environment

• Dedicated simulation using MARS/FLUKA/etc. should be used, but we can use published results to get an estimate
 Mokhov, Rakhno, Kerby, Strait (2003)

• Hadrons and electrons absorbed in the TAN

• Coincident muon background $\sim 10^8$ per LHC year. Can be greatly suppressed by requiring tracks to start in the detector and reconstruct a vertex, and requiring high and symmetric energies

• Electron background greatly reduced if electrons can be distinguished from muons
DARK PHOTON EVENT RATES

• Up to 10^5 dark photons arrive in FASER in 300 fb$^{-1}$ in currently unconstrained regions of dark photon parameter space

$$pp \rightarrow A' X, \quad A' \text{ travels } \sim \mathcal{O}(100) \ m, \quad A' \rightarrow e^+ e^-, \mu^+ \mu^-$$
DARK PHOTON REACH

• Assuming negligible background, FASER may probe parameter space with $m_{A'} \sim 10 - 500$ MeV, $\varepsilon \sim 10^{-6} - 10^{-3}$

• SHiP much more sensitive at very low ε, but much of this is excluded already. SHiP reach at high $m_{A'}$ is from direct QCD production, which we have neglected
DARK HIGGS BOSONS

• Another renormalizable coupling: Higgs portal

\[
\begin{align*}
\mathcal{L} &= -m_\phi^2 \phi^2 - \sin \theta \frac{m_f}{v} \phi f \bar{f} - \lambda v h \phi \phi + \ldots
\end{align*}
\]

• The resulting theory contains a new scalar boson \(\phi \) with mass \(m_\phi \), Higgs-like couplings suppressed by \(\sin \theta \), and a trilinear coupling \(\lambda \)
DARK HIGGS PROPERTIES

- $N_B \ll N_K \sim N_\pi$, but dark Higgs couples to mass, so

$$B(B \rightarrow \phi) \gg B(K \rightarrow \phi) \gg B(\eta, \pi \rightarrow \phi)$$

Turns out B and K are similar and the dominant sources of dark Higgses

- Decays to heaviest possible states
In B decays, $p_T \sim m_B$, dark Higgs bosons are less collimated than dark photons.
• FASER probes a large swath of new parameter space and is complementary to other current and proposed experiments
TRILINEAR COUPLINGS REACH

• FASER can also probe the trilinear couplings through

\[V_{tb} \xrightarrow{\phi} W^+ \xrightarrow{h} V_{ts} \xrightarrow{\phi} \bar{s} \]

• This competes with \(h \rightarrow \phi \phi \) (invisible)

• Can get 100s of events from “double dark Higgs” production
COMPLEMENTARY PROPOSED EXPERIMENTS

SHiP

~1000 m3, ~100M CHF
Alekhin et al. (2015)

FASER

~1000 m3
Gligorov, Knapen, Papucci, Robinson (2017)

MATHUSLA

~200,000 m3 ~ 1 IKEA, ~50M
Chou, Curtin, Lubatti (2016)

CODEX-b

~1 m3 ~ 5 μIKEAs
Feng, Galon, Kling, Trojanowski (2017)
SUMMARY AND OUTLOOK

• The LHC has seen no new physics. Adding inexpensive, small detectors to improve discovery prospects is a good idea.

• FASER: targets light, weakly-coupled new particles at low p_T, runs simultaneously with ATLAS/CMS, and is small and inexpensive.

• No significant backgrounds identified for the far location; near location requires more study.

• FASER will probe significant new regions of dark photon and dark Higgs parameter space. Other models?

• Much work to do. Possible timeline: install prototype in LS2, install full detector in LS3 in time for the HL-LHC era.