MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

ATLAS SUSY WG Meeting

CERN

Jonathan Feng, University of California, Irvine 31 January 2018

Based on 1510.06089, 1608.00283 with Mohammad Abdullah (Texas A&M), Sho Iwamoto (Padua), Ben Lillard (UC Irvine)

OUTLINE

- Motivations
- QUE and QDEE Models
- Allowed Masses
- Neutralino Dark Matter Implications

[Collider Implications (Sho Iwamoto, next talk)]

MOTIVATIONS

- For decades, the case for weak-scale SUSY has rested on 3 leading motivations.
- Recent results from the LHC motivate thinking about new SUSY theories beyond the MSSM that are consistent with these results, but also, ideally, preserve these motivations.

THE HIGGS BOSON MASS

- At tree-level, the Higgs boson mass is maximally *m_z*.
- To make it 125 GeV, need large radiative corrections. In the MSSM, this requires multi-TeV stops or large left-right stop mixing. Both options may be unnatural, and the first is certainly disappointing.

 An obvious solution: introduce more matter, e.g., extra top-like quarks and squarks, that gives additional radiative corrections. These can raise the Higgs mass without extremely heavy or highly mixed superpartners. Moroi, Okada (1991)

VECTOR-LIKE MATTER

- Unfortunately, extra *chiral* matter is essentially excluded.
- E.g., such matter contributes to $h \rightarrow \gamma \gamma$, which is famously non-decoupling.

- The problem: for chiral matter, Q'_L is an SU(2) doublet, t'_R is an SU(2) singlet, so all mass comes from $\lambda h Q'_L t'_R$, $m_f \propto \lambda_f$.
- A solution: introduce vector-like matter, fields come in left-right pairs. E.g., Q'_L , t'_R and Q'_R , t'_L , so then also have vector-like masses $M_V Q'_L Q'_R$ and $M_V t'_L t'_R$ without coupling to Higgs field.
- We need to keep large Yukawa couplings to give large radiative corrections to the Higgs mass, but we can simultaneously take M_V large enough to satisfy all constraints (Higgs properties, electroweak precision, etc.).

QUE and QDEE MODELS

- Vector-like fermions are anomaly-free, so we don't need complete generations. Too many possibilities?
- But we want to keep gauge coupling unification. This suggests complete SU(5) multiplets: 5s or 10s. Requiring couplings perturbative to GUT scale:
 - 5s do not give sufficient m_{Higgs} corrections.
 - at most one vector-like 10 is allowed.

This is the QUE model.

There is also a "flipped SU(5) possibility": the QDEE model.

QUE AND QDEE MODELS

• Summary so far: remarkably, there are only two models that give (1) large Higgs mass corrections and (2) preserve gauge coupling unification. E.g., the QUE model:

Dirac fermions: T_4, B_4, t_4, τ_4 Complex scalars: $\tilde{T}_{4L}, \tilde{T}_{4R}, \tilde{B}_{4L}, \tilde{B}_{4R}, \tilde{t}_{4L}, \tilde{t}_{4R}, \tilde{\tau}_{4L}, \tilde{\tau}_{4R}$

[upper case: SU(2) doublet, lower case: SU(2) singlet]

• Simple, but not that simple! Assume unified 4th generation squark, slepton, quark, and lepton masses:

$$\begin{split} m_{\tilde{q}_4} &\equiv m_{\tilde{T}_{4L}} = m_{\tilde{T}_{4R}} = m_{\tilde{B}_{4L}} = m_{\tilde{B}_{4R}} = m_{\tilde{t}_{4L}} = m_{\tilde{t}_{4R}} \\ m_{\tilde{\ell}_4} &\equiv m_{\tilde{\tau}_{4L}} = m_{\tilde{\tau}_{4R}} \\ m_{q_4} &\equiv m_{T_4} = m_{B_4} = m_{t_4} \\ m_{\ell_4} &\equiv m_{\tau_4} . \end{split}$$

ALLOWED MASSES

- As with the top Yukawa in the MSSM, the 4th generation quark Yukawa couplings have quasi-fixed points.
- Given the quasi-fixed point value, what masses give the desired Higgs mass? ~1-2 TeV squarks are sufficient. Current lower bound ~1.3 TeV (ATLAS, 1707.03347)

NEUTRALINO DARK MATTER

 3rd SUSY motivation: requiring correct thermal relic density prefers certain masses, often provides upper limits:

$$\Omega_{\chi} \sim \frac{1}{\langle \sigma_{\rm ann} v \rangle} \sim \frac{m_{\chi}^2}{(\text{couplings})^4}$$

 In the MSSM, Bino DM annihilation is highly suppressed, typically get too much DM:

 Need to either raise the couplings (Higgsino/Wino mixing) or lower the mass (light Binos < 200 GeV, gluinos < 1.4 TeV)

MSSM4G DARK MATTER

 For MSSM4G, the situation is completely different. Assume neutralino LSP, annihilates to 4th generation leptons:

 $m_{\tilde{q}_4}, m_{\tilde{\ell}_4}, m_{q_4} > m_{\tilde{B}} > m_{\ell_4}$

 Annihilation to 4th generation leptons is unsuppressed, completely dominates all O(100) SM diagrams, opens up new Bino DM parameter space.

• Note: No charged DM, so 4^{th} generation leptons must mix with and decay to $e/\mu/\tau$, neutrinos; large range of lifetime.

COSMOLOGICALLY PREFERRED MASSES

 To get the correct thermal relic density, need

Bino: 200–550 GeV Slepton: 350–550 GeV Lepton: 200–450 GeV

[Gluino: 1.4-3.8 TeV]

 The masses cannot be higher, or there is too much DM

MSSM4G DARK MATTER DIRECT DETECTION

 MSSM4G DM direct detection cross sections naturally fall between current bounds and the neutrino floor

Abdullah, Feng, Iwamoto, Lillard (2016)

MSSM4G DARK MATTER INDIRECT DETECTION

Halo DM annihilates to τ₄ pairs, which then decay to e/μ/τ, produce gamma rays. Decays to τ may be seen at CTA in the next few years. Decays to e and μ are harder for CTA, but better for the LHC.

Abdullah, Feng, Iwamoto, Lillard (2016)

MSSM4G AT THE LHC

- MSSM4G models imply a wealth of signals at the LHC (see next talk).
- 4th generation particles must decay, but can decay to any of the 1st three generations with a variety of lifetimes. Possible signals:
 - Quarks, squarks, gluinos in the 1-3 TeV range, cascading down to MET signatures
 - $\tau_4 \tau_4$ Drell-Yan production, followed by decays $\tau_4 \rightarrow \tau Z$, νW , τh , etc.
 - $\tilde{\tau}_4 \tilde{\tau}_4$ Drell-Yan production, followed by decays $\tilde{\tau}_4 \rightarrow e \chi$, $\mu \chi$, $\tau \chi$
 - $\tilde{\tau}_4 \tilde{\tau}_4$ Drell-Yan production, leading to longlived charged particles, displaced vertices

Parameter	QUE (GeV)
$M_{ ilde{B}}$	200 - 540
$m_{ ilde{q}_4}$	1000 - 4000
$m_{\tilde{\ell}_4}$	350 - 550
m_{q_4}	1000 - 2000
m_{ℓ_4}	170 - 450
$m_{\tilde{t}}$	1000 - 4000

CONCLUSIONS

- MSSM4G: extension of the MSSM to include 4th generation vector-like particles.
- Higgs mass and gauge coupling unification → only two models to consider: QUE and QDEE.
- ~1-2 TeV stops and 4th generation squarks raise Higgs mass to 125 GeV.
- Dark matter: 350–550 GeV sleptons, 200–550 GeV Binos, 170–450 GeV leptons give correct thermal relic density.
- Promising signals for direct detection, indirect detection, and LHC.