

THEORY UPDATE

FASER 3rd Collaboration Meeting

Jonathan Feng, UC Irvine, 3 September 2020

INTRODUCTION

- Many theory papers exploring the physics potential of FASER and FASERv. A sampling from the last year:
 - [1] I. Boiarska, K. Bondarenko, A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy, and A. Sokolenko, "Light scalar production from Higgs bosons and FASER 2," *JHEP* 05 (2020) 049, arXiv:1908.04635 [hep-ph].
 - [2] R. N. Mohapatra and N. Okada, "Dark Matter Constraints on Low Mass and Weakly Coupled B-L Gauge Boson," arXiv:1908.11325 [hep-ph].
 - [3] N. Okada and D. Raut, "Hunting Inflaton at FASER," arXiv:1910.09663 [hep-ph].
 - [4] V. Baules, N. Okada, and S. Okada, "Braneworld Cosmological Effect on Freeze-in Dark Matter Density and Lifetime Frontier," arXiv:1911.05344 [hep-ph].
 - [5] K. Jodłowski, F. Kling, L. Roszkowski, and S. Trojanowski, "Extending the reach of FASER, MATHUSLA, and SHiP towards smaller lifetimes using secondary particle production," *Phys. Rev. D* 101 (2020) no. 9, 095020, arXiv:1911.11346 [hep-ph].
 - [6] L. Darmé, S. A. Ellis, and T. You, "Light Dark Sectors through the Fermion Portal," JHEP 07 (2020) 053, arXiv:2001.01490 [hep-ph].
 - [7] W. Bai, M. Diwan, M. V. Garzelli, Y. S. Jeong, and M. H. Reno, "Far-forward neutrinos at the Large Hadron Collider," JHEP 06 (2020) 032, arXiv:2002.03012 [hep-ph].
 - [8] N. Okada, S. Okada, and Q. Shafi, "Light Z' and Dark Matter from $U(1)_X$ Gauge Symmetry," arXiv:2003.02667 [hep-ph].
 - [9] M. Bahraminasr, P. Bakhti, and M. Rajaee, "Sensitivities to secret neutrino interaction at FASERν," arXiv:2003.09985 [hep-ph].
 - [10] F. Kling, "Probing light gauge bosons in tau neutrino experiments," *Phys. Rev. D* 102 (2020) no. 1, 015007, arXiv:2005.03594 [hep-ph].
 - [11] K. J. Kelly, M. Sen, W. Tangarife, and Y. Zhang, "Origin of sterile neutrino dark matter via secret neutrino interactions with vector bosons," *Phys. Rev. D* 101 (2020) no. 11, 115031, arXiv:2005.03681 [hep-ph].
 - [12] P. Bakhti, Y. Farzan, and S. Pascoli, "Unravelling the richness of dark sector by FASERv," arXiv:2006.05437 [hep-ph].
 - [13] F. Kling and S. Trojanowski, "Looking forward to test the KOTO anomaly with FASER," Phys. Rev. D 102 (2020) no. 1, 015032, arXiv:2006.10630 [hep-ph].
 - [14] C. Csáki, R. T. D'Agnolo, M. Geller, and A. Ismail, "Crunching Dilaton, Hidden Naturalness," arXiv:2007.14396 [hep-ph].
 - [15] B. Dutta, S. Ghosh, and J. Kumar, "Opportunities for probing $U(1)_{T3R}$ with light mediators," arXiv:2007.16191 [hep-ph].
 - [16] Y. Jho, J. Kim, P. Ko, and S. C. Park, "Search for sterile neutrino with light gauge interactions: recasting collider, beam-dump, and neutrino telescope searches," arXiv:2008.12598 [hep-ph].

[17] T. Araki, K. Asai, H. Otono, T. Shimomura, and Y. Takubo, "Dark Photon from Light Scalar Boson Decays at FASER." arXiv:2008.12765 [hep-ph].

3 Sep 2020

INTRODUCTION

Here cover a few topics inspired by the following questions:

How likely is FASER to discover new physics at Run 3?

What are the prospects for the HL-LHC era?

How likely is FASER to discover new physics at Run 3?

FASER'S DISCOVERY POTENTIAL

- FASER can probe many models. Consider dark photons.
- In Run 3, FASER will start probing new dark photon parameter space with the first fb⁻¹, and extend its sensitivity in the 10 – 100 MeV mass range.
- Is this an interesting part of parameter space?

EXISTING CONSTRAINTS ON DARK PHOTONS

- There is a vast and largely unexplored parameter space.
- "Bump hunts" exclude $\epsilon > 10^{-3}$.
- Fixed target experiments exclude most of the gray region.
- Astrophysics (supernova, BBN, CMB) excludes patches at very low coupling.
- But overall, light, weaklyinteracting particles are much less constrained than ~TeV, strongly-interacting particles.

DARK PHOTON MODELS

• If the dark photon is a portal particle, coupling arises from kinetic mixing:

Visible Sector
SM, U(1)_{EM,}
$$B^{\nu}$$
 = $-\frac{1}{2} \epsilon F^{\mu\nu}F_{D\mu\nu}$ = $-\frac{1}{2} One Dark Sector DM, Dark Forces, $X^{\mu}$$

• Mixing can be generated at 1-loop. If 0 at high scale, expect $\epsilon \sim 10^{-3}$

$$\overset{B^{\nu}}{\sim} \overset{X^{\mu}}{\sim} \quad \epsilon = -\frac{g'g_X}{16\pi^2} \sum_i Y_i q_i \ln \frac{M_i^2}{\mu^2} \quad \text{Holdom (1986)}$$

• But there are also theories with mixing generated only at higher loop level

Other than making us feel ok that ε > 10⁻³ is excluded, models don't provide much guidance about the coupling, and none at all about the mass
3 Sep 2020

HE THERMAL RELIC LANDSCAPE

Dark Sector Candidates, Anomalies, and Search Techniques

THE MUON'S ANOMALOUS MAGNETIC MOMENT

• The 3.7 σ discrepancy between the SM and experiment can be resolved by MeV-GeV particles with $\varepsilon \sim 10^{-3}$. The dark photon is no longer a viable solution, but other particles with similar masses and couplings are.

Hagiwara et al. (2017); Aoyama et al. (2020)

THE ⁸Be and ⁴He ATOMKI ANOMALIES

- 2016: A 7 σ anomaly in the decays of excited ⁸Be nuclei can be explained by a new particle with mass 17 MeV and couplings ~ 10^{-4} to 10^{-3} .
- 2019: A new 7σ anomaly in the decays of excited ⁴He nuclei can be explained by the same new particle.

Feng, Tait, Verhaaren (2020); Batell, Feng, Verhaaren (in progress) See also Zhang, Miller (2020)

3 Sep 2020

SELF-INTERACTING DARK MATTER

- There are indications from small-scale structure that dark matter may be strongly self-interacting.
- For example, there appear to be halo profiles that are not as cuspy (high central density) as predicted by standard cold dark matter.

 This can be explained by a characteristic dark sector mass scale of ~ 10-100 MeV.

Tulin, Yu (2017) Rocha et al. (2012); Peter et al. (2012) Vogelsberger et al. (2012); Zavala et al. (2012)

TARGETS IN DARK PHOTON PARAMETER SPACE

3 Sep 2020

What are the prospects for the HL-LHC era?

FORWARD PHYSICS FACILITY

- FASER, FASERv, and other proposed detectors are currently highly constrained by tunnels and infrastructure that was never designed to support experiments.
- At the same time, it is becoming clear that there is a rich physics program in the far-forward region, spanning long-lived particle searches, neutrinos, QCD, dark matter, dark sector, cosmic rays, and cosmic neutrinos.
- Strongly motivates enlarging UJ12 (or UJ18) to create a dedicated facility to house several far-forward experiments.

NEW PHYSICS SEARCHES AT THE FPF

- FASER 2 (R = 1 m, L = 5-20 m) can discover all candidates with renormalizable couplings (dark photon, dark Higgs, HNL); ALPs with all types of couplings (γ, f, g); and many other particles.
- Among the PBC benchmark scenarios, FASER2's discovery potential extends to all benchmark scenarios, except BC2 and BC3.

Benchmark Model	FASER	FASER 2
BC1: Dark Photon		
BC1': U(1) _{B-L} Gauge Boson		
BC2: Invisible Dark Photon	-	-
BC3: Milli-Charged Particle	-	_
BC4: Dark Higgs Boson	-	\checkmark
BC5: Dark Higgs with hSS	-	
BC6: HNL with e	-	\checkmark
BC7: HNL with μ	-	\checkmark
BC8: HNL with $\boldsymbol{\tau}$	\checkmark	\checkmark
BC9: ALP with photon		
BC10: ALP with fermion		
BC11: ALP with gluon		

BC2: INVISIBLE DARK PHOTONS AT THE FPF

- If m_{LLP} > 2m_{DM}, the LLP will typically decay in the dark sector to dark matter, leading to invisible decays.
- Can look for the resulting DM to scatter off electrons at FASERv 2. Dominant background from neutrinos reduced for $1 < E_e < 20$ GeV.

• May be able to probe relic target region. Complementary to dedicated missing energy experiments (e.g., LDMX): these are more sensitive (probe farther into the "too large $\Omega_{\chi} h^{2}$ " region), but don't detect DM scattering.

BC3: MILLICHARGED PARTICLES AT THE FPF

- Currently the target of the MilliQan experiment near the CMS IP.
- MilliQan Demonstrator (Proto-MilliQan) already probes new region. Full MilliQan planned to run in this location at HL-LHC, but it appears that sensitivity can be improved greatly by moving it to the FPF (ForMINI).

FORWARD PHYSICS FACILITY: SNOWMASS LOI

• One of 1578 Snowmass LOIs

 FPF LOI had 240 authors with interest from many communities. An FPF workshop is being planned for the coming months.

THEMATIC AREAS

- (EF05) QCD and Strong Interactions: Precision QCD
- (EF06) QCD and Strong Interactions: Hadronic Structure and Forward QCD
- (EF09) BSM: More General Explorations
- (EF10) BSM: Dark Matter at Colliders
- (NF03) BSM
- (NF06) Neutrino Interaction Cross Sections
- (NF10) Neutrino Detectors
- (RF06) Dark Sector Studies at High Intensities
- (CF07) Cosmic Probes of Fundamental Physics
- (AF05) Accelerators for PBC and Rare Processes
- (UF01) Underground Facilities for Neutrinos
- (UF02) Underground Facilities for Cosmic Frontier

SNOWMASS 2021 LETTER OF INTEREST

FORWARD PHYSICS FACILITY

Roshan M. Abraham,¹ Henso Abreu,² Yoav Afik,² Sanjib K. Agarwalla,³ Juliette Alimena,⁴ Luis Anchordoqui,⁵ Claire Antel,⁶ Akitaka Ariga,⁷ Tomoko Ariga,⁸ Carlos A. Argüelles,⁹ Kento Asai,¹⁰ Pouya Bakhti,¹¹ Akif B. Balantekin,¹² Victor Baules,¹³ Brian Batell,¹⁴ James Beacham,¹⁵ John F. Beacom,^{4,16,17} Nicole F. Bell,¹⁸ Florian Bernlochner,¹⁹ Atri Bhattacharya,²⁰ Tobias Boeckh,¹⁹ Jamie Boyd,²¹ Lydia Brenner,²¹ Mauricio Bustamante,²² Franck Cadoux,⁶ Mario Campanelli,²³ David W. Casper,²⁴ Grigorios Chachamis,²⁵ Spencer Chang,²⁶ Xin Chen,²⁷ Michael L. Cherry,²⁸ James M. Cline,²⁹ Ruben Conceição,³⁰ Andreas Crivellin,²¹ Matthew Citron,³¹ Andrea Coccaro,³² Yanou Cui,³³ Mohamed R. Darwish,³⁴ Carlos P. de los Heros,³⁵ Patrick deNiverville,³⁶ Peter B. Denton,³⁷ Albert De Roeck,²¹ Frank F. Deppisch,²³ Jordy de Vries,³⁸ Claudio Dib,³⁹ Caterina Doglioni,⁴⁰ Monica D'Onofrio,⁴¹ Liam Dougherty,²¹ Candan Dozen,²⁷ Marco Drewes,⁴² Bhaskar Dutta,⁴³ Tamer Elkafrawy,⁴⁴ Sebastian A. R. Ellis,⁴⁵ Rouven Essig,⁴⁶ Glennys R. Farrar,⁴⁷ Yasaman Farzan,¹¹ Yannick Favre,⁶ Anatoli Fedynitch,⁴⁸ Deion Fellers,²⁶ Jonathan L. Feng^a,²⁴ Didier Ferrere,⁶ Patrick Foldenauer,⁴⁹ Saeid Foroughi-Abari,⁵⁰ Jonathan Gall,²¹ Iftah Galon,⁵¹ Maria V. Garzelli,⁵² Stefano Giagu,⁵³ Stephen Gibson,⁵⁴ Francesco Giuli,⁵⁵ Bhawna Gomber,⁵⁶ Victor P. Goncalves,⁵⁷ Sergio Gonzalez-Sevilla,⁶ Yury Gornushkin,⁵⁸ Sumit Ghosh,⁴³ Claire Gwenlan,⁵⁹ Carl Gwilliam,⁴¹ Jan Hajer,⁴² Francis Halzen,^{12,60} Juan Carlos Helo,⁶¹ Christopher S. Hill,⁴ Martin Hirsch,⁶² Samuel D. Homiller,⁴⁶ Matheus Hostert,^{63,64} Shih-Chieh Hsu,⁶⁵ Zhen Hu,²⁷ Pham Q. Hung,⁶⁶ Giuseppe Iacobucci,⁶ Philip Ilten,⁶⁷ Tomohiro Inada,⁴⁸ Hiroyuki Ishida,⁶⁸ Aya Ishihara,⁶⁹ Ahmed Ismail,¹ Ameen Ismail,⁷⁰ Sune Jakobsen,²¹ Yu Seon Jeong,²¹ Yongsoo Jho,⁷¹ Krzysztof Jodlowski,⁷² Enrique Kajomovitz,² Kevin J. Kelly,⁷³ Maxim Yu. Khlopov,^{74,75,76} Valery A. Khoze,⁴⁹ Doojin Kim,⁴³ Jongkuk Kim,⁷⁷ Teppei Kitahara,⁷⁸ Felix Kling^a,⁴⁵ Joachim Kopp,^{21,79} Umut Kose,²¹ Piotr Kotko,⁸⁰ John Krizmanic,⁸¹ Susanne Kuehn,²¹ Suchita Kulkarni,⁸² Jason Kumar,⁸³ Alexander Kusenko,⁸⁴ Krzysztof Kutak,⁸⁵ Greg Landsberg,⁸⁶ Luca Lavezzo,⁴ Rebecca K. Leane,⁴⁵ Hye-Sung Lee,⁸⁷ Helena Lefebvre,⁵⁴ Benjamin V. Lehmann,⁸⁸ Lorne Levinson,⁸⁹ Ke Li,⁶⁵ Shirley W. Li,⁴⁵ Shuailong Li,⁹⁰ Benjamin Lillard,⁹¹ Jinfeng Liu,²⁷ Wei Liu,⁹² Zhen Liu,⁹³ Steven Lowette,⁹⁴ Chiara Magliocca,⁶ Brandon Manley,⁴ Danny Marfatia,⁸³ Ioana Maris,⁹⁵ Josh McFayden,²¹ Sam Meehan,²¹ Sascha Mehlhase,⁹⁶ David W. Miller,⁹⁷ Dimitar Mladenov,²¹ Vasiliki A. Mitsou,⁶² Rabindra N. Mohapatra,⁹³ Mitsuhiro Nakamura,⁹⁸ Toshiyuki Nakano,⁹⁸ Marzio Nessi,²¹ Friedemann Neuhaus,⁷⁹ Kenny C. Y. Ng,⁹⁹ Koji Noda,⁴⁸ Satsuki Oda,¹⁰⁰ Nobuchika Okada,¹³ Satomi Okada,¹³ Yasar Onel,¹⁰¹ John Osborne,²¹ Hidetoshi Otono,⁸ Carlo Pandini,⁶ Vishvas Pandey,¹⁰² Hao Pang,²⁷ Silvia Pascoli,⁴⁹ Seong Chan Park,⁷¹ Brian Petersen,²¹ Alexey A. Petrov,¹⁰³ Tanguy Pierog,¹⁰⁴ Francesco Pietropaolo,²¹ James L. Pinfold,¹⁰⁵ Markus Prim,¹⁹ Michaela Queitsch-Maitland,²¹ Meshkat Rajaee,¹¹ Digesh Raut,¹⁰⁶ Federico L. Redi,¹⁰⁷ Peter Reimitz,¹⁰⁸ Mary Hall Reno,¹⁰¹ Filippo Resnati,²¹ Adam Ritz,⁵⁰ Thomas Rizzo,⁴⁵ Tania Robens,¹⁰⁹ Christophe Royon,¹¹⁰ Jakob Salfeld-Nebgen,²¹ Osamu Sato,⁹⁸ Paola Scampoli,^{7,111} Kristof Schmieden,²¹ Matthias Schott,⁷⁹ Pedro Schwaller,⁷⁹ Manibrata Sen,¹¹² Dipan Sengupta,¹¹³ Anna Sfyrla,⁶ Qaisar Shafi,¹⁰⁶ Takashi Shimomura,¹¹⁴ Seodong Shin,¹¹⁵ Savannah Shively,²⁴ Ian M. Shoemaker,¹¹⁶ Carlos V. Sierra,¹¹⁷ Torbjörn Sjöstrand,¹¹⁸ Yotam Soreq,² Huayang Song,⁹⁰ Jordan Smolinsky,¹⁰² John Spencer,⁶⁵ David Stuart,³¹ Shufang Su,⁹⁰ Wei Su,¹¹⁹ Antoni Szczurek,^{120,121} Dai-suke Takahashi,¹⁰⁰ Yosuke Takubo,¹²² Ondřej Theiner,⁶ Serap Tilav,¹⁰⁶ Charles Timmermans,^{117,123} Eric Torrence,²⁶ Sebastian Trojanowski,¹²⁴ Yu-Dai Tsai,⁷³ Serhan Tufanli,²¹ Paolo Valente,¹²⁵ Benedikt Vormvald,²¹ Carlos E. M. Wagner,^{97,126} Di Wang,²⁷ Zeren S. Wang,¹²⁷ Tao Xu,¹²⁸ Tianlu Yuan,^{12,60} Tevong You,²¹ Shigeru Yoshida,⁶⁹ Dengfeng Zhang,²⁷ Gang Zhang,²⁷ Yue Zhang,¹²⁹ and Yi-Ming Zhong¹³⁰

^a Contact Information: Jonathan L. Feng (jlf@uci.edu), Felix Kling (felixk@slac.stanford.edu)