STANDARD WIMPS

Dark Matter

Les Houches Summer School

Jonathan Feng, UC Irvine, 27-29 July 2021

CONGRATULATIONS TO THE ORGANIZERS

← Marco Cirelli <marco.cirelli@gmail.com> to me, Babette, Jure ◄ Sun, Sep 30, 2018, 9:30 PM 🛛 🏠

Dear Jonathan,

we are submitting a proposal for a Les Houches School in the summer of 2021 and we would like to invite you to be one of our key lecturers.

We really hope that you can accept our invitation! Please let us know at your earliest convenience.

Best regards,

Marco Cirelli (LPTHE Paris), Babette Döbrich (CERN), Jure Zupan (U Cincinnati) - Organizers

. . .

	Re: Les Houches school on DM 2021 approved D FZINANCE/travel × 🖶 🗹						
•	Jonathan Feng <jlf@uci.edu> Dec 20, 2018, 7:51 PM 🟠 🕤 ito Marco, Anne, Josh, Tracy, Philip, Igor, Jodi, Joachim, Annika, Justin, Clare, Bernard, Yonit, Tongyan, Joachim, Ji 🗸</jlf@uci.edu>						
	Dear Marco, Babette, Jure,						
	Congratulations, and thanks for letting me know.						
	For me, this sets the record for how far in advance I have entered a speaking engagement on my calendar. I'm expecting that just a few months before the School, the LHC will have turned on again, FASER will have found dark photons, and the lectures will be really interesting.						
	Best, Jonathan						

STEVEN WEINBERG (1933-2021)

- His 1987 Loeb Lectures, including the anthropic prediction of the cosmological constant, were the first physics talks I ever attended.
- Four Golden Lessons

Weinberg (2003)

- No one knows everything, and you don't have to.
- Head for the messes.
- Forgive yourself for wasting time [working on the wrong questions].
- Learn some of the history of your field.

OUTLINE

I. Why WIMPs?

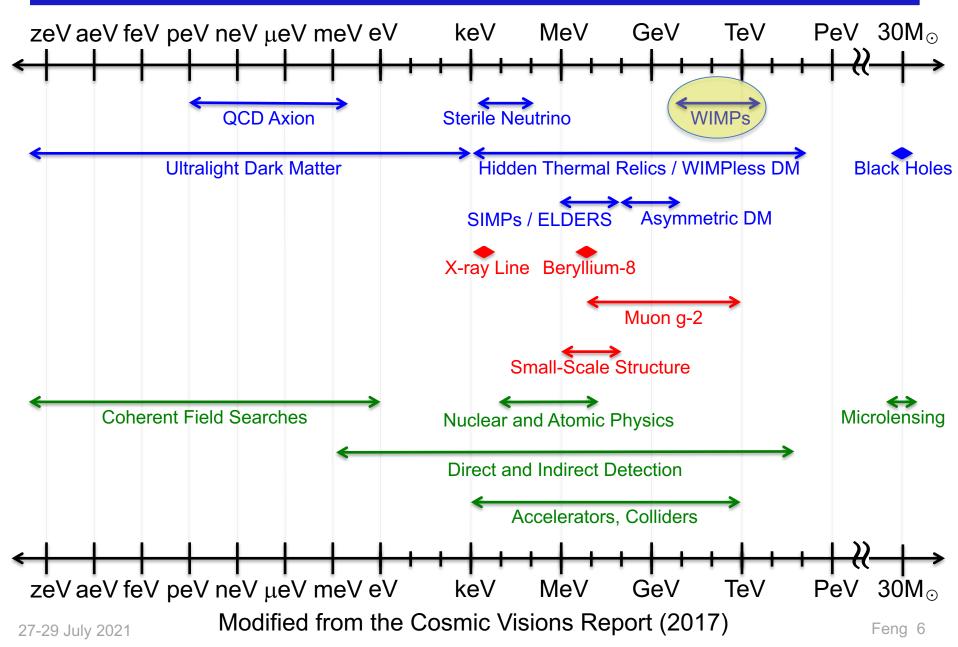
- The Weak Scale
- The WIMP Miracle
- The Discrete WIMP Miracle

II. WIMPs in Supersymmetry

- Supersymmetry
- Stability and LSPs
- Neutralino Freezeout
- Cosmologically-Preferred Supersymmetry

III. WIMP Detection

- Direct Detection
- Indirect Detection
- Collider Searches


IV. WIMP Variations

- Inelastic WIMPs
- Isospin-Violating WIMPs
- SuperWIMPs
- WIMPless Dark Matter

3 90-minute lectures; questions welcome!

I. WHY WIMPS?

WHY WIMPS?

GOALS

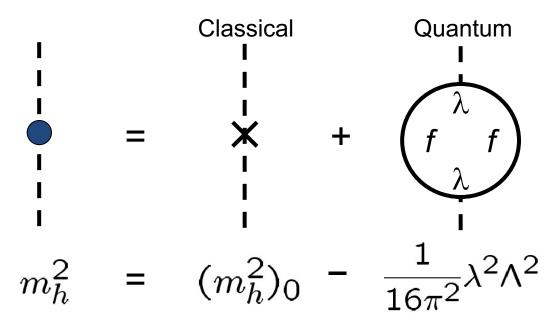
- WIMPs have dominated the particle dark matter landscape for decades.
- It would be inconceivable to lecture about
 - DM production (Ruderman) without talking about WIMP freeze out.
 - DM direct detection (Cooley) without talking about WIMP direct detection.
 - DM indirect detection (Slatyer) without talking about WIMP indirect detection.
 - DM at accelerators (Harris) without talking about WIMPs at colliders.
- So there will be a lot of overlap with other lectures. The goal here is to
 - explain why WIMPs have been a dominant paradigm for so long,
 - gather together some of their basic features,
 - highlight the example of WIMPs in supersymmetry,
 - and present some of the variations on the WIMP theme that have by now suffused the literature and illustrate the richness of this circle of ideas.
- These lectures are targeted to graduate students starting DM research, but I hope there will be something of interest to others as well.

THE WEAK SCALE

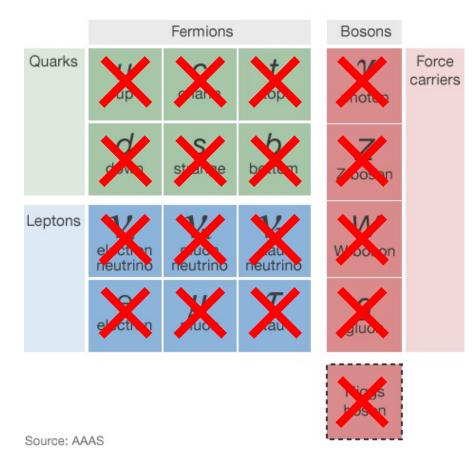

 Fermi's constant G_F was introduced in the 1930s to describe nuclear beta decay

 $n \rightarrow p \ e^- \ \overline{\nu}$.

• The measured value, $G_F \sim 10^{-5}$ GeV⁻², introduces a new mass scale in nature, the weak scale:


 $m_{weak} \sim 100 \text{ GeV}$.

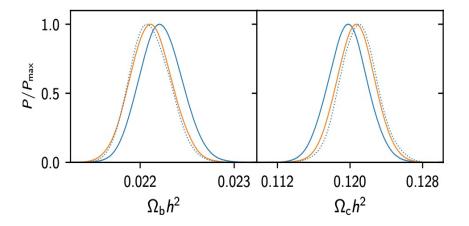
• We still don't understand the origin of this mass scale, but every reasonable attempt so far introduces new particles at the weak scale.


NATURALNESS

• We have now discovered a particle that looks like a fundamental scalar with a mass $m_h \simeq 125$ GeV: the Higgs boson. Scalars are different:

- For $\Lambda \sim m_{\text{Planck}} \sim 10^{19}$ GeV, and f = top ($\lambda \sim 1$), the classical and quantum contributions must cancel to 1 part in 10³² to yield the physical Higgs mass.
- This is the naturalness, fine-tuning, or gauge hierarchy problem of the Standard Model. Its resolution likely requires new particles at the weak scale that introduce new quantum contributions to cancel the existing ones.

DARK MATTER


Known DM properties

- Gravitationally interacting
- Not short-lived
- Not hot
- Not baryonic

None of the known particles can be cold DM.

RELIC DENSITY

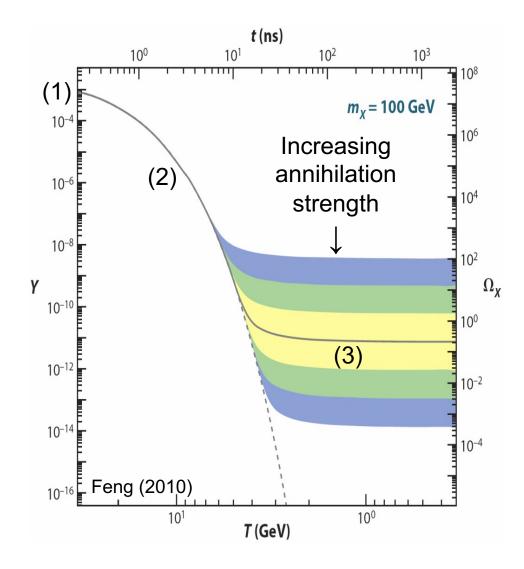
- We know little about dark matter. We know more about what it isn't than what it is.
- The one thing we do know *precisely* is the dark matter's relic density: $\Omega_{\rm DM}h^2 = 0.1200 \pm 0.0012.$ Planck Collaboration (2018)

- What can we learn from this about dark matter's particle properties?
 - Generically: nothing.
 - But if the dark matter now is a surviving relic of the hot Big Bang through thermal freeze out: a lot.

THERMAL FREEZE OUT

(1) Assume a new heavy particle X is initially in thermal equilibrium:

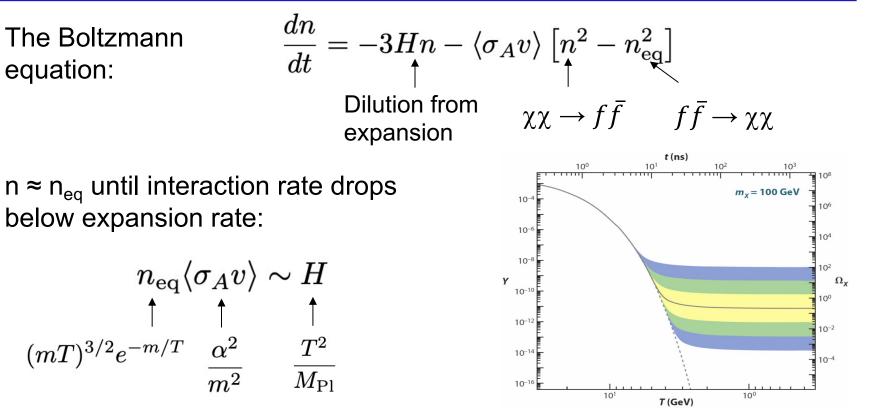
 $XX \leftrightarrow f\bar{f}$


(2) Universe cools:

 $XX \stackrel{\rightarrow}{\leftarrow} f\bar{f}$

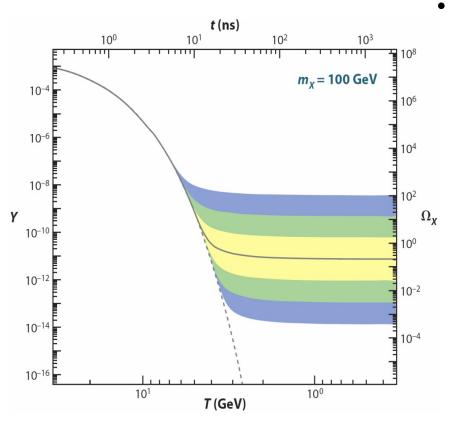
(3) Universe expands:

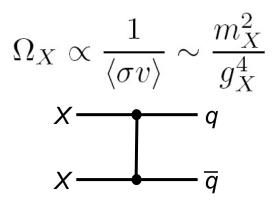
$$XX \not = f\bar{f}$$


Zeldovich et al. (1960s)

THERMAL FREEZE OUT

The Boltzmann equation:

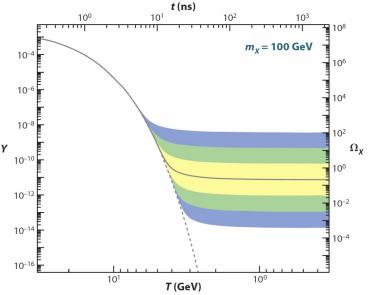

below expansion rate:


Might expect freeze out shortly after T drops below m, when n_{eq} becomes exponentially (Boltzmann) suppressed. But M_{Pl} is large, and the universe expands *slowly*! First guess is pretty good:

$$rac{m}{T} \sim \ln\left(rac{lpha^2 M_{
m Pl}}{\sqrt{mT}}
ight) \stackrel{m \sim m_{
m weak}}{\Longrightarrow} rac{m}{T} \sim 25$$

THE WIMP MIRACLE

It turns out that the relation between Ω_X and annihilation strength is wonderfully simple:

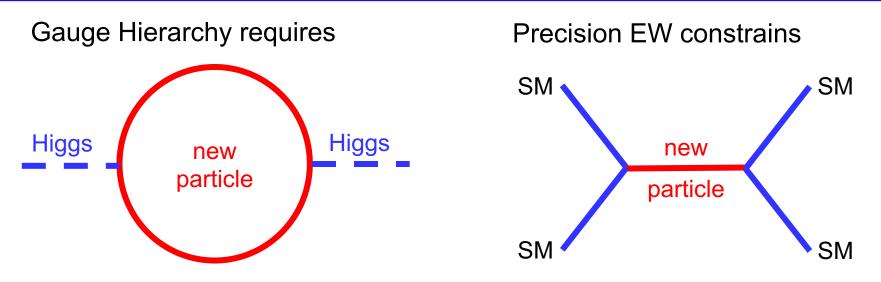


where we've assumed that the annihilation is characterized by a single mass scale.

- Keeping track of the constants, we find $m_X \sim 100 \text{ GeV}$, $g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$.
- A remarkable coincidence: particles with the right thermal relic density are now at the energy frontier! The LHC is a big DM search experiment.

THE WIMP MIRACLE

- In more detail, at freeze out, $\frac{m}{T} \sim 20$, so K.E. = $\frac{3}{2}kT \rightarrow T \sim \frac{1}{3}mv^2 \sim \frac{1}{20}m \rightarrow v \sim \frac{1}{3}$.
- At freezeout, dark matter was neither ultra-^{*r*} relativistic, nor non-relativistic. But it was far more relativistic then than it is now in our neighborhood, where $v \sim 10^{-3}$. This is a key difference to keep in mind!


- Freeze out is at T ~ 5 GeV and t ~ ns, not at T ~ 100 GeV and t ~ ps.
- This is also called chemical freeze out (no number changing), which is distinct from kinetic freeze out (no energy exchange through $fX \rightarrow fX$).
- The WIMP miracle is not a precise coincidence. But it is tantalizing, and it is our strongest quantitative hint that our attempts to understand the universe on the largest and smallest scales may be related.

WIMP STABILITY

- The WIMP miracle is well appreciated. But its success relies on another less welladvertised "miracle."
- DM must be stable.
- How natural is this? A priori, not very: the only stable particles we know about are very light.
- But there are reasons, based on experimental data, to think that at least one weak scale particle might be stable.

THE DISCRETE WIMP MIRACLE

- The 4-point SM interactions are highly constrained by many experiments, notably those at LEP through precision electroweak data.
- Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable: Discrete Symmetry ↔ Stability.

Cheng, Low (2003); Wudka (2003)

• Remarkable coincidence: particle physics independently motivates particles that are stable enough to be dark matter.

II. WIMPS IN SUPERSYMMETRY

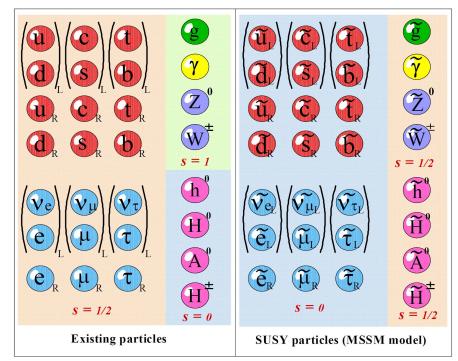
WIMPS IN BSM MODELS

- For the reasons mentioned above, WIMPs appear generically in many BSM theories
 - Propose some new weak scale particles.
 - They help some things, but strain electroweak fits.
 - Impose a discrete symmetry to improve fits.
 - An ideal DM candidate emerges!
- Many examples
 - Neutralinos in supersymmetry

Goldberg (1983); Elllis et al. (1983)

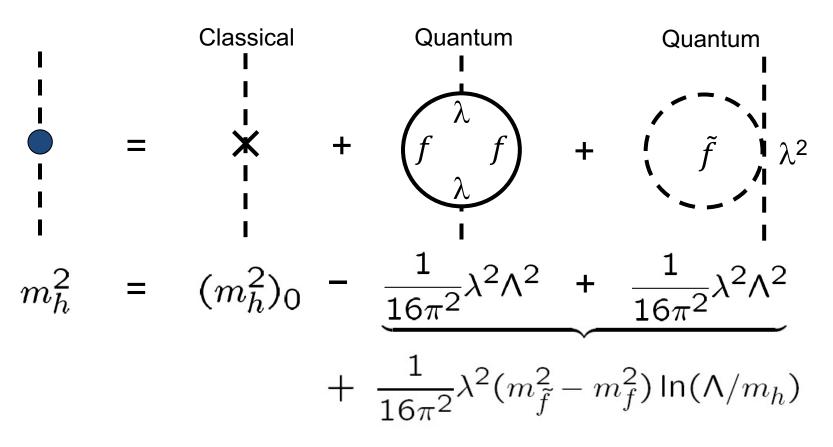
- KK B1 ("KK photons") in universal extra dimensions

Servant, Tait (2004); Cheng, Feng, Matchev (2004)


Lightest T-odd particle in little Higgs theories

Cheng, Low (2004)

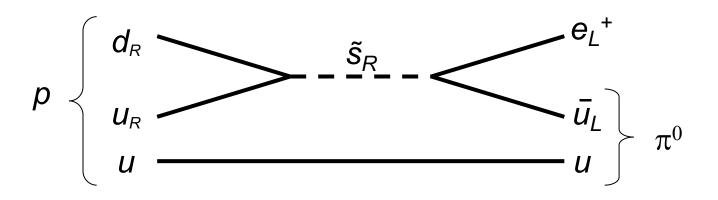
• Here focus on supersymmetry as an interesting example.


SUPERSYMMETRY

- Supersymmetry predicts a partner particle for every known particle:
 Spin 0 ↔ Spin ¹/₂, Spin ¹/₂ ↔ Spin 1.
- New particles
 - Spin 0 squarks
 - Spin 0 sleptons
 - Spin $\frac{1}{2}$ gauginos: Bino, Winos, gluinos - Spin $\frac{1}{2}$ Higgsinos

 The Higgsino partner of the SM Higgs boson is a new fermion that introduces anomalies. In the Minimal Supersymmetric Standard Model (MSSM), we must add an additional Higgs boson and Higgsino to cancel these anomalies, but no more.

NATURALNESS IN SUPERSYMMETRY

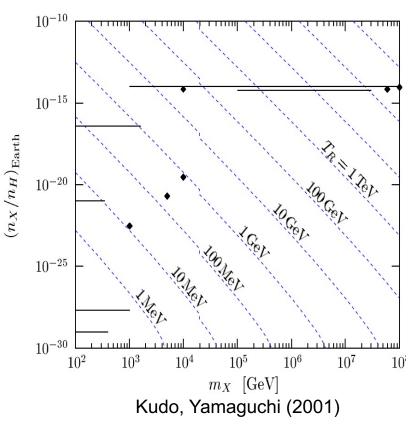


• For $\Lambda \sim m_{Pl}(m_W)$, and f = top, 1% fine-tuning $\rightarrow m_{\tilde{t}} < 1$ (3) TeV

• Also, bounds on other sfermions are much weaker: $m_{\tilde{f}} < 10 (30) \text{ TeV}$ Drees (1986); Dimopoulos, Giudice (1995); Pomoral, Tomasini (1996)

R-PARITY AND STABLE LSPS

• One immediate problem: supersymmetric particles mediate proton decay $p \rightarrow \pi^0 e^+$ and similar decay modes.


- Forbid this with R-parity conservation: $R_p = (-1)^{3(B-L)+2S}$
 - SM particles have $R_p = 1$, SUSY particles have $R_p = -1$.
 - Require $\Pi R_p = 1$ at all vertices.

Farrar, Fayet (1978)

- Consequences
 - This eliminates proton decay and also many troubling 4-point interactions of SM particles.
 - The lightest SUSY particle (LSP) is stable and a potential DM candidate.

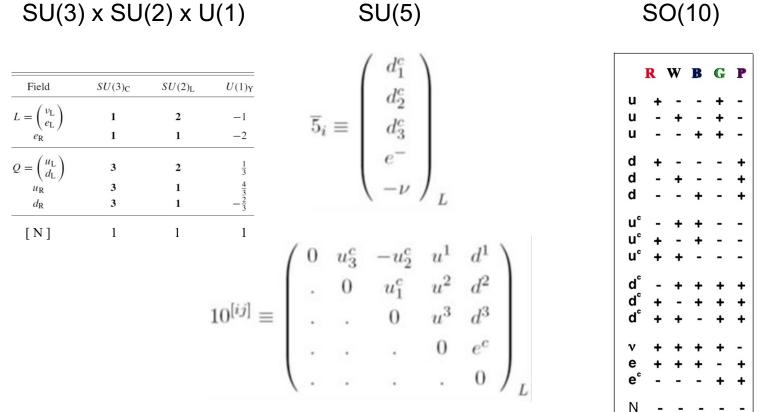
WHAT IS THE LSP?

- Should be neutral. Yes, but why? The story is more nuanced and interesting than is commonly appreciated.
- A colored LSP (say, a gluino) will bind with quarks to form a color-neutral state.
 - Yes, but there are severe bounds on exotic nuclei from sea water searches (solid lines and dots in figure), where the constraint is strengthened by testing deep sea water.
- But inflation can dilute this away.
 - Yes, but they are regenerated by reheating. Masses < TeV are excluded by T_{RH} > 1 MeV, but masses > TeV are allowed.


Bottom line: for m < TeV, the LSP should be color and electrically neutral.

NEUTRAL SUSY PARTICLES

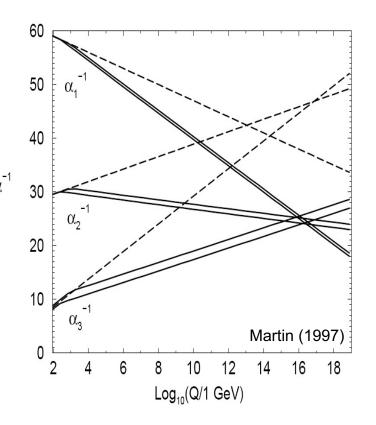
	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ u}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Noute			-)	Ĝ
	Neutrail			llinos: { $\chi \equiv \chi_1, \chi_2, \chi_3, \chi$		gravitino
1	В	W ^o				
1/2	Ĩ	Ŵ٥	$ ilde{H}_u$	$ ilde{H}_d$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H_u	H _d	ĩ	
					sneutrino	


RENORMALIZATION GROUP EQUATIONS

- RGEs play a crucial role in all of physics.
- For gauge couplings, it can be thought of as the effect of putting a charge in a dielectric, where in QFT, the vacuum is the dielectric.
- The most famous example may be the asymptotic freedom of the QCD coupling.

COUPLING CONSTANT UNIFICATION

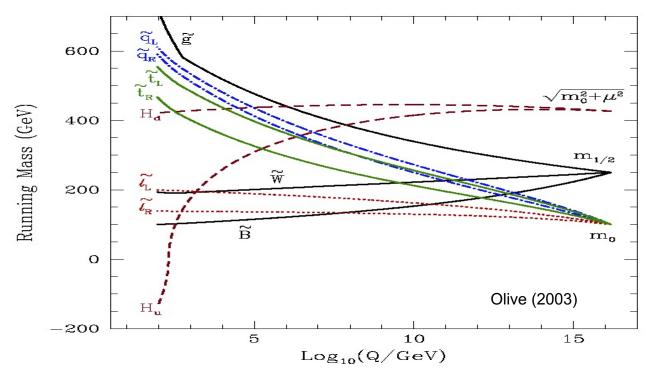
- In supersymmetry, RGEs play an especially important role.
- It is well known that the seemingly arbitrary quantum numbers of matter in the SM can be explained by grand unification.



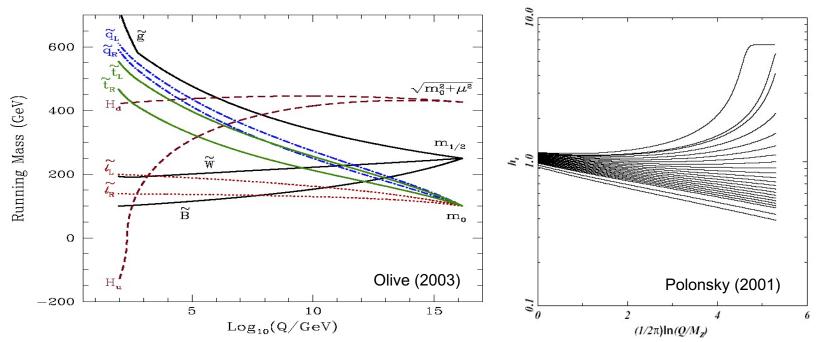
 $[1 \equiv N]$

COUPLING CONSTANT UNIFICATION

- A requirement of grand unification is that the SU(3), SU(2), and U(1) gauge couplings unify at some scale.
- With the SM particle content, they don't.
- But with the addition of SUSY particles at ⁶ the ~TeV scale, they do at Q ~ 10¹⁶ GeV.
 - Unifies at a coupling in the perturbative regime.
 - Unifies below the Planck scale.
 - But not too far below the Planck scale to induce too-fast proton decay.

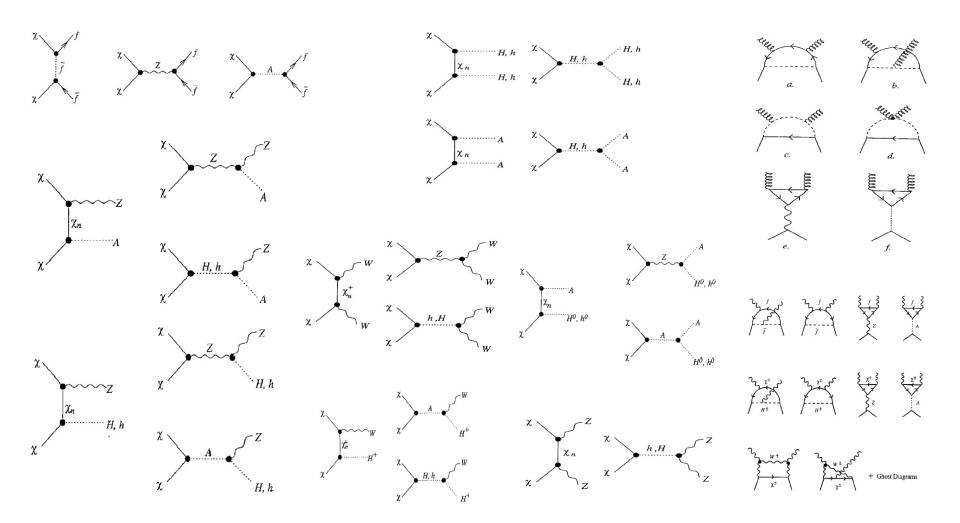

Dimopoulos, Raby, Wilczek (1981)

• Coupling constant unification is beautifully consistent with the fact that SM particles fit neatly into GUT multiplets, and it explains why $g_3 > g_2 > g_1$.


RGES AND BINO DARK MATTER

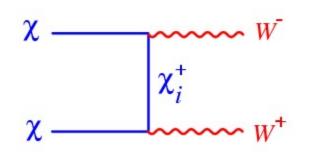
- All other couplings and masses also RG evolve in SUSY. Essential fact: gauge couplings increase masses, Yukawa couplings decrease masses.
- Depending on the initial conditions at the GUT scale, the lightest superpartners are typically the stau and the Bino.
- The Bino therefore emerges as a neutral, stable, cold DM candidate!

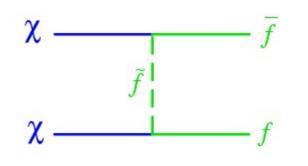
OTHER INTERESTING RGE IMPLICATIONS


- Colored superpartners are typically heavier than uncolored superpartners. Squarks are expected to be heavier than sleptons.
- The Higgs mass² parameter evolves to negative values, explains why SU(2) is broken, and not SU(3) or U(1), and why $m_W << M_{Pl}$.
- The top quark Yukawa coupling generically runs to $\lambda \approx 1$, explains why $m_t \simeq 173$ GeV.

NEUTRALINO RELIC DENSITY

- If the Bino is WIMP dark matter, we can determine its thermal relic density in a well-defined supersymmetry model.
- The resulting research program is, then, clear:
 - The regions of parameter space that give too much dark matter are excluded.
 - The regions that give too little are allowed, but Binos aren't all the dark matter.
 - The regions that give just the right amount are cosmologically preferred and deserve special attention in search experiments, colliders, etc.
- We just need to determine how the Bino annihilates, calculate its annihilation rate in the early universe, evolve its number density to the present day, and calculate its thermal relic density.

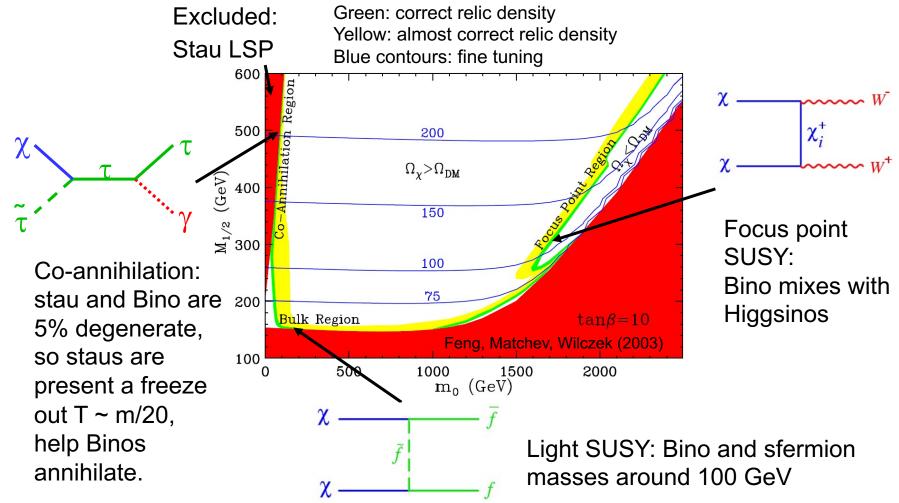

NEUTRALINO ANNIHILATION



Jungman, Kamionkowski, Griest (1995)

RELIC DENSITY

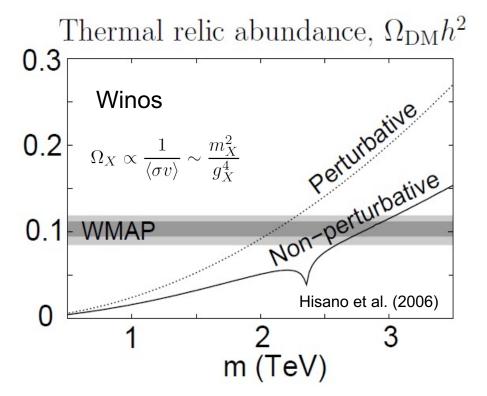
• This is a mess! But we can bring order to chaos in the following way. Typically there are two dominant classes of annihilation processes:



- Gauge boson diagrams. These are absent for $\chi \approx$ Bino, because U(1) gauge bosons do not have 3- and 4point self-interactions.
- Fermion diagrams. χ are Majorana fermions, so Pauli exclusion \rightarrow the initial state has J=0. The final state therefore cannot be $f_L + \bar{f}_R$ in an S-wave. Need
 - *P*-wave: $\sigma v \sim \sigma_0 + \sigma_1 v^2$, $v^2 \sim 0.1$, or
 - Chiral flip: m_f/m_W .

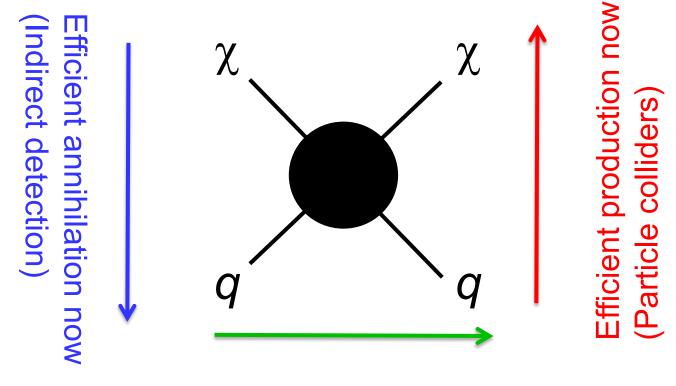
Bottom line: annihilation is typically suppressed, $\Omega_{DM}h^2$ is typically too high.

COSMOLOGICALLY-PREFERRED SUSY


There are a number of ways to enhance the annihilation. 3 instructive examples are shown here for the constrained MSSM model, also known as minimal supergravity.

STATUS OF COSMOLOGICALLY-PREFERRED SUSY

- Light SUSY: Excluded by collider searches for 100 GeV sleptons.
- Focus-point DM: Stringently probed by direct detection.
 Bino-Higgsino mixture, m < 1 TeV.
- Co-annihilating DM: still viable.

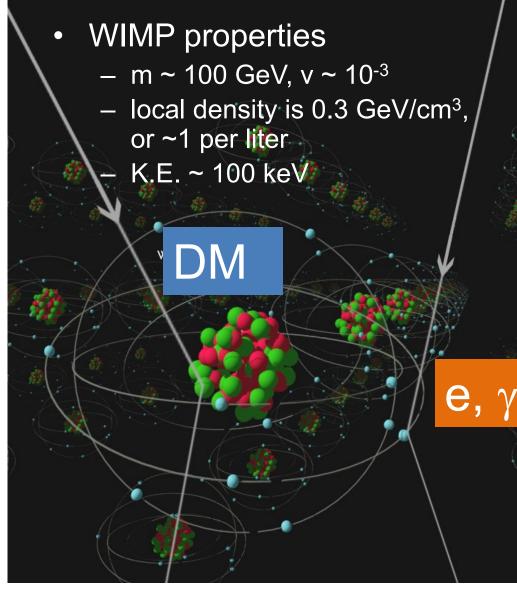

 χ , τ_R degenerate, m < 600 GeV.
 Can explain muon g-2.

- Outside of CMSSM: Wino-like DM with m ~ 2.7-3 TeV. Stringently probed by indirect detection.
- Many other interesting scenarios outside of CMSSM. Note that SUSY can always be heavier, but in this context, cosmology provides upper bounds. This is an essential synergy between particle physics and cosmology – WIMPs cannot be decoupled away without sacrificing the WIMP miracle.

III. WIMP DETECTION

WIMP DETECTION

Correct relic density \rightarrow Efficient annihilation then



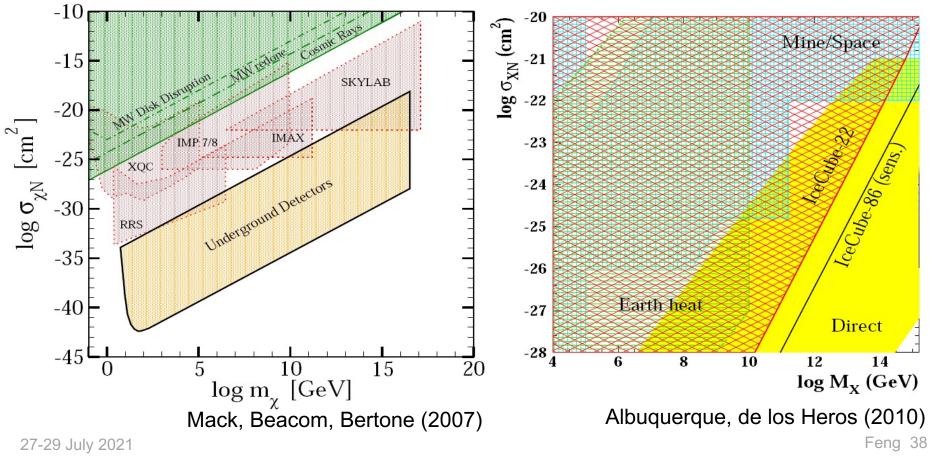
Efficient scattering now (Direct detection)

27-29 July 2021

Feng (2008)

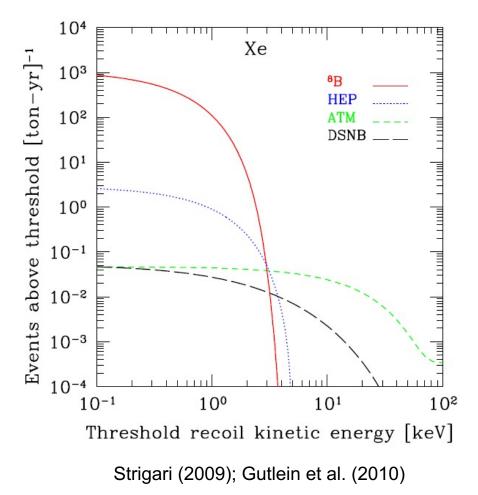
DIRECT DETECTION

Look for normal matter recoiling from WIMP collisions in detectors deep underground


For dark matter masses ~ 100 GeV, best is elastic scattering off nuclei

Nuclear recoils detected by phonons, scintillation, ionization, ...

Attisha


THE BIG PICTURE: UPPER BOUND

- The event rates depend on the interaction cross section. What is the upper bound? Another fascinating and underappreciated story.
- Strongly-interacting DM does not reach underground detectors.
- But the strongly-interacting window is now closed.

THE BIG PICTURE: LOWER BOUND

- Is there (effectively) a lower bound?
- Solar, atmospheric, and diffuse supernova background neutrinos provide a difficult background: the "neutrino floor."
- The limits of background-free, non-directional direct detection searches (and also the metric prefix system!) will be reached by ~10 ton experiments probing

WIMP SCATTERING

• Consider WIMPs with quark interactions

$$\mathcal{L} = \sum_{q=u,d,s,c,b,t} \left(\alpha_q^{\rm SD} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q + \alpha_q^{\rm SI} \bar{\chi} \chi \bar{q} q \right)$$

- DM particles now have v ~ 10⁻³. In the nonrelativistic limit, the first terms reduce to spin-spin interactions, and so are called spin-dependent (SD) interactions.
- The second terms are spin-independent (SI) interactions; focus on these here.

SPIN-INDEPENDENT THEORY

 Theories give DM-quark interactions, but experiments measure DMnucleus cross sections

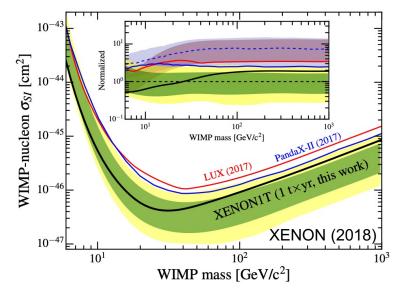
$$\sigma_{\rm SI} = \frac{4}{\pi} \mu_N^2 \sum_q \alpha_q^{\rm SI2} \left[Z \frac{m_p}{m_q} f_{T_q}^p + (A - Z) \frac{m_n}{m_q} f_{T_q}^n \right]^2 ,$$

where $\mu_N = \frac{m_\chi m_N}{m_\chi + m_N}$ is the reduced mass, and $f_{T_q}^{p,n} = \frac{\langle p, n | m_q \bar{q}q | p, n \rangle}{m_{p,n}}$
is the fraction of the nucleon's mass carried by quark q .

• This may be parameterized by

$$\sigma_A = \frac{\mu_A^2}{M_*^4} \left[f_p Z + f_n (A - Z) \right]^2 ,$$

where $f_{p,n}$ are the nucleon level couplings. Note that f_p and f_n are not necessarily equal.

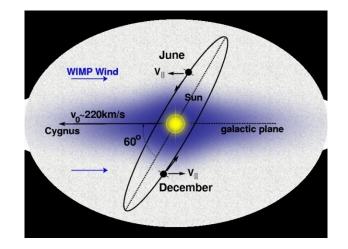

SPIN-INDEPENDENT EXPERIMENT

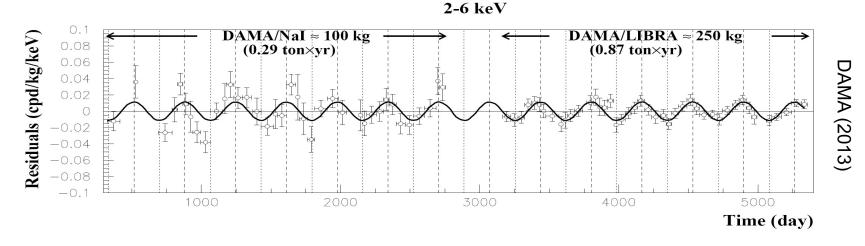
- The rate observed in a detector is $R = \sigma_A I_A$, where $\sigma_A = \frac{\mu_A^2}{M^4} \left[f_p Z + f_n (A - Z) \right]^2$ $I_A = N_T n_X \int dE_R \int_{v_{\min}}^{v_{esc}} d^3 v f(v) \frac{m_A}{2v\mu_A^2} F_A^2(E_R)$ physics: form factor Astrophysics: local DM number density
- Results are typically reported assuming $f_p=f_n$, so $\sigma_A \sim A^2$, and scaled to a single nucleon. DM sees the whole nucleus, doesn't resolve nucleons, and so in this approximation, bigger nuclei are better.

DETECTION STRATEGIES


The state-of-the-art: large, underground, background-free experiments, looking for a few events each year.

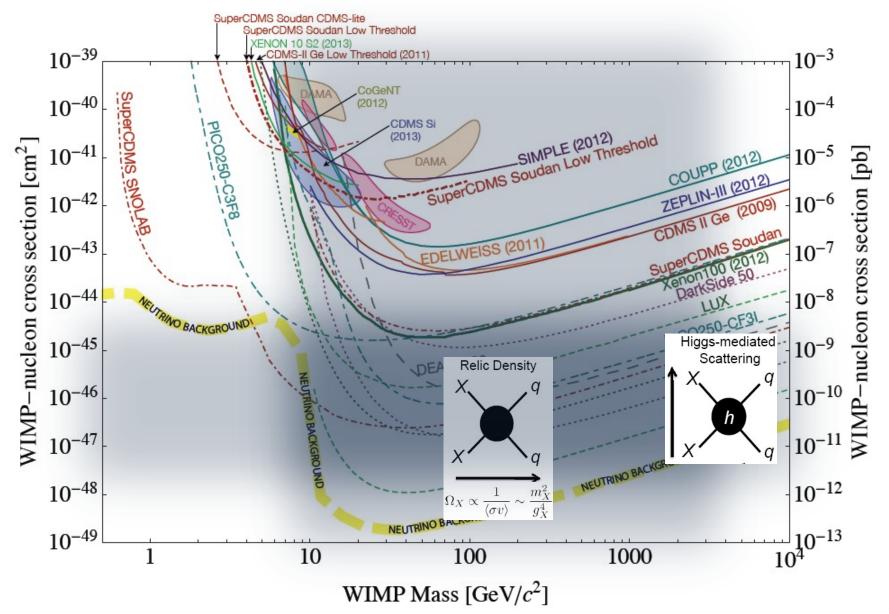
Currently leading constraints at $m_X \sim 100$ GeV are from ~ 1 tonne experiments using liquid noble gases: XENON, LUX, and PandaX.



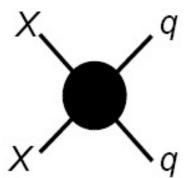

DETECTION STRATEGIES

An alternative strategy: look for annual modulation, where the collision rate changes as the Earth's velocity adds with the Sun's.

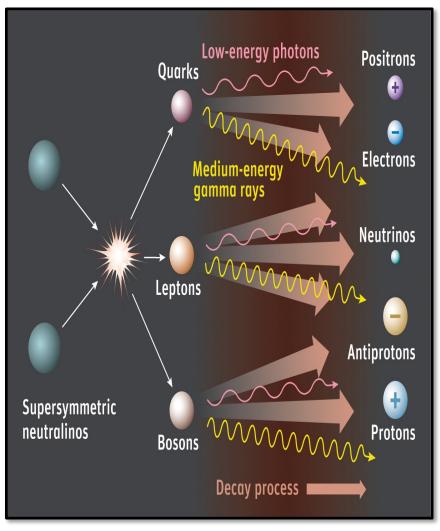
Drukier, Freese, Spergel (1986)



DAMA: many σ signal with period T ~ 1 year, and maximum ~ June 2

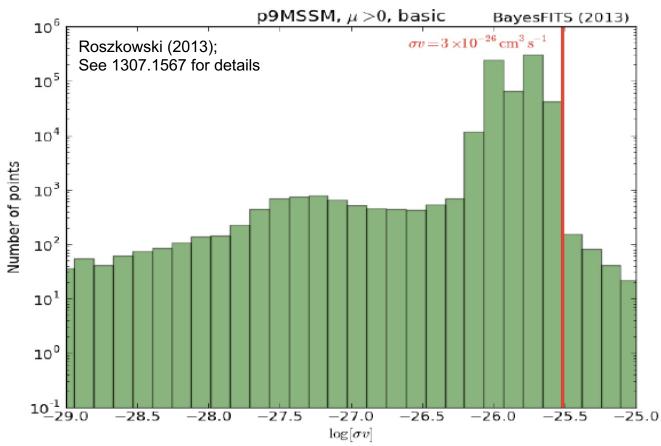

A few % modulation on top of a large constant background.

FUTURE PROSPECTS

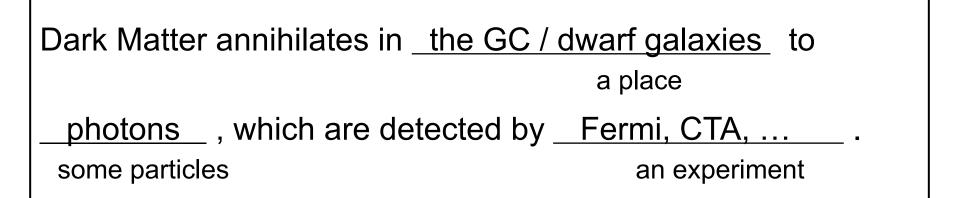


INDIRECT DETECTION

- Dark matter may pair annihilate in our galactic neighborhood to
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons



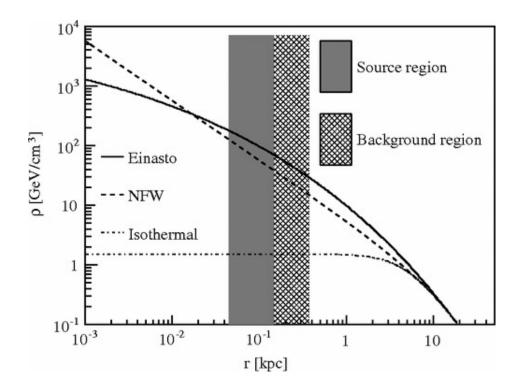
• The relic density provides a target annihilation cross section $\langle \sigma_A v \rangle \sim (2 \text{ to } 3) \times 10^{-26} \text{ cm}^3/\text{s}$


ROBUSTNESS OF THE TARGET CROSS SECTION

 Relative to direct detection, indirect rates typically have smaller particle physics uncertainties (but larger astrophysical uncertainties), since annihilation determines both the relic density and the rate. The correspondence is not perfect, though, because v ~ 1/3 is not v ~ 10⁻³.

PHOTONS

The flux factorizes:
$$\frac{d\Phi_{\gamma}}{d\Omega dE} = \sum_{i} \underbrace{\frac{dN_{\gamma}^{i}}{dE}\sigma_{i}v\frac{1}{4\pi m_{\chi}^{2}}}_{Particle} \int_{\psi} \rho^{2} dl$$
Particle Astro-
Physics Physics


Particle physics: two kinds of signals

- Lines from XX $\rightarrow \gamma\gamma$, γ Z: loop-suppressed rates, but distinctive signal.
- Continuum from XX \rightarrow ff $\rightarrow \gamma$: τ ree-level rates, but a broad signal.

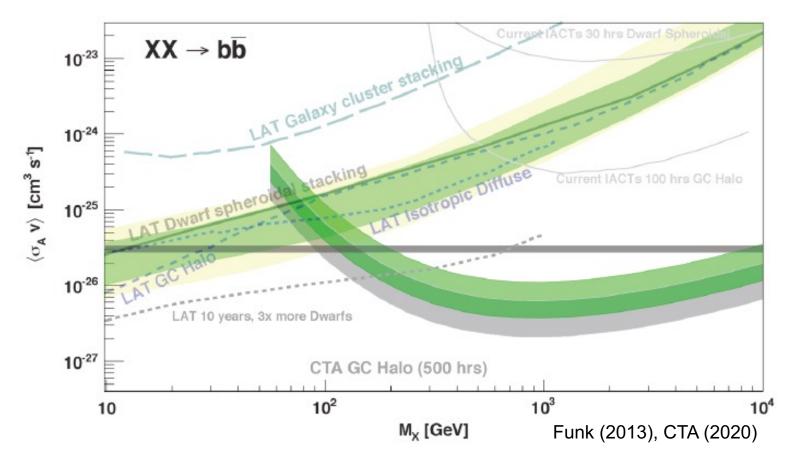
HALO PROFILES

Astrophysics: two kinds of sources

- Galactic Center: close, large signal, but large backgrounds.
- Dwarf Galaxies: farther and smaller, so smaller signal, but DM dominated, so smaller backgrounds.
- In both cases, halo profiles are not well-determined at the center, introduces an uncertainty in flux of up to ~100

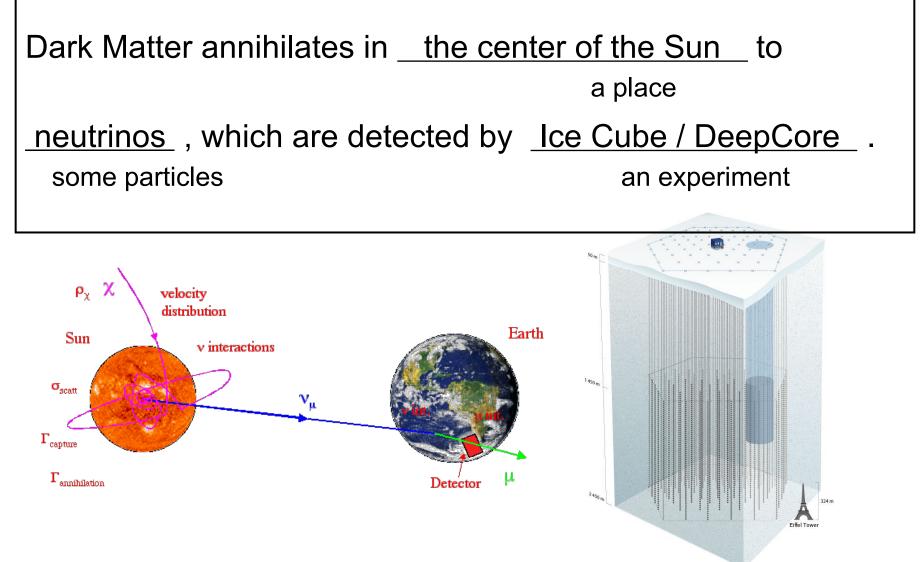
PHOTONS: EXPERIMENTS

Veritas, Fermi-LAT, HAWC, and others

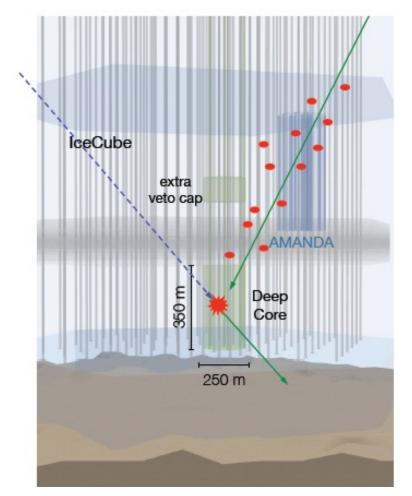


PHOTONS: EXPERIMENTS

Cerenkov Telescope Array



PHOTONS: STATUS AND PROSPECTS


- Fermi-LAT has excluded a light WIMP with the target annihilation cross section for certain annihilation channels
- CTA extends the reach to WIMP masses above 10 TeV

INDIRECT DETECTION: NEUTRINOS

NEUTRINOS: EXPERIMENTS

Current: IceCube/DeepCore, ANTARES

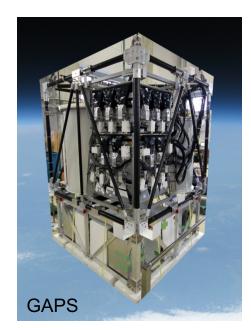
The Sun is typically in equilibrium

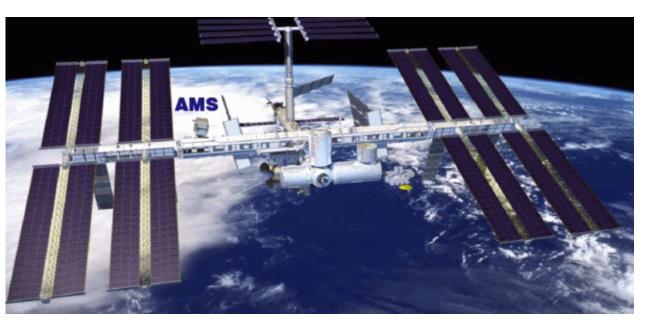
- Spin-dependent scattering off hydrogen → capture rate → annihilation rate
- Neutrino indirect detection results are typically plotted in the (m_X, σ_{SD}) plane, compared with direct detection experiments.
- Future experiments may discover the smoking-gun signal of HE neutrinos from the Sun, or set stringent σ_{SD} limits.

INDIRECT DETECTION: ANTI-MATTER

Dark Matter annihilates in _	the halo	to	
	a place		
		Fermi/AMS/	
some particles		an experiment	

- In contrast to photons and neutrinos, anti-matter does not travel in straight lines, but rather bumps around the local halo before arriving in our detectors.
- For example, positrons, created with energy E₀, detected with energy E

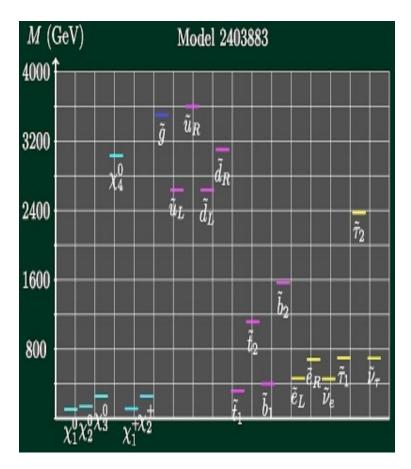

$$\frac{d\Phi_{e^+}}{d\Omega dE} = \frac{\rho_{\chi}^2}{m_{\chi}^2} \sum_i \sigma_i v B_{e^+}^i \int dE_0 f_i(E_0) G(E_0, E)$$

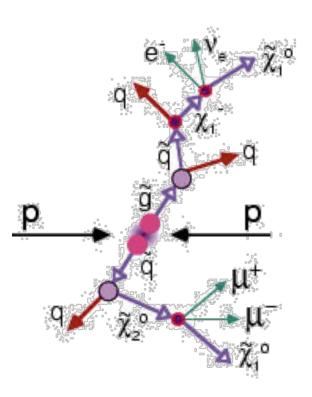

ANTI-MATTER: EXPERIMENTS

- Positrons (PAMELA, Fermi-LAT, AMS)
- Anti-Protons (PAMELA, AMS)

PARTICLE COLLIDERS

CMS


LHCb


ATLAS

ALICE

FULL MODELS AND SIMPLIFIED MODELS

• Consider full models (e.g., SUSY), or simplified models (e.g., minimal DM model) that have just a few particles and parameters. Produce other particles that decay to DM, look for missing E_T signatures.

WIMP EFFECTIVE THEORY

Name

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

Operator

 $\bar{\chi}\chi\bar{q}q$

 $\bar{\chi}\gamma^5\chi\bar{q}q$

 $\bar{\chi}\chi\bar{q}\chi^5q$

 $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$

 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$

 $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$

 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$

 $\left| \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q \right|$

 $\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$

 $\left| \bar{\chi} \sigma_{\mu
u} \gamma^5 \chi \bar{q} \sigma_{lphaeta} q \right|$

 $\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$

 $\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$

 $\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$

 $\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$

Coefficient

 m_{q}/M_{*}^{3}

 im_a/M_*^3

 im_a/M_*^3

 m_q/M_*^3

 $1/M_{*}^{2}$

 $1/M_{*}^{2}$

 $1/M_{\star}^{2}$

 $1/M_{*}^{2}$

 $1/M_{*}^{2}$

 i/M_{*}^{2}

 $\alpha_s/4M_*^3$

 $i\alpha_s/4M_*^3$

 $i\alpha_s/4M_*^3$

 $\alpha_s/4M_*^3$

Name

C1

C2

C3

C4

C5

C6

R1

R2

R3

R4

Operator

 $\chi^{\dagger}\chi \bar{q}q$

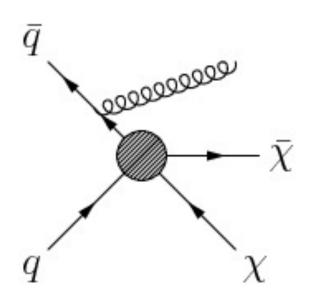
 $\chi^{\dagger}\chi \bar{q}\gamma^5 q$

 $\chi^{\dagger}\partial_{\mu}\chi \bar{q}\gamma^{\mu}q$

 $\chi^{\dagger}\partial_{\mu}\chi \bar{q}\gamma^{\mu}\gamma^{5}q$

 $\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$

 $\chi^{\dagger}\chi G_{\mu
u} ilde{G}^{\mu
u}$


 $\chi^2 \bar{q} q$

 $\chi^2 \bar{q} \gamma^5 q$

 $\chi^2 G_{\mu\nu} G^{\mu\nu}$

 $\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$

• Alternatively, produce the DM directly, but in association with something else that can be seen. Model the blob as an effective operator, look for mono-*X*, where *X* = photon, jet, *W*, *Z*, *h*, *b*, *t*,

Birkedal, Matchev, Perelstein (2004)

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu (2010) Bai, Fox, Harnik (2010)

• Allows comparison of direct detection, indirect detection, and collider searches with various signatures, but requires that the EFT is valid (mediator is heavy), which is not always true for colliders.

Coefficient

 m_q/M_{*}^2

 im_a/M_*^2

 $1/M_{*}^{2}$

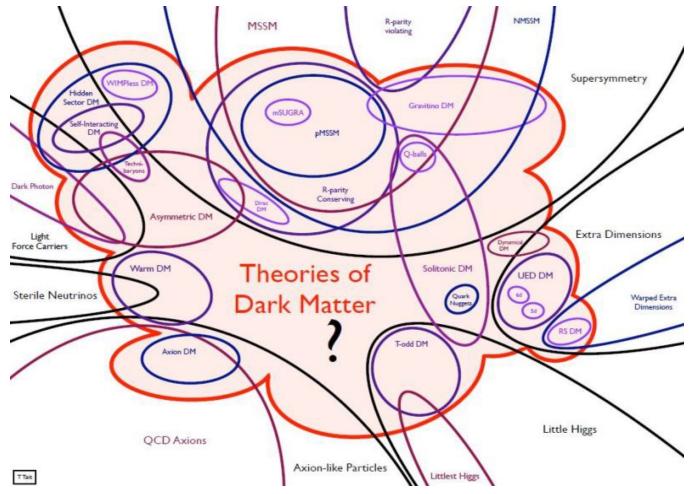
 $1/M_{*}^{2}$

 $\alpha_s/4M_*^2$

 $i\alpha_s/4M_*^2$

 $m_{q}/2M_{*}^{2}$

 $im_a/2M_*^2$

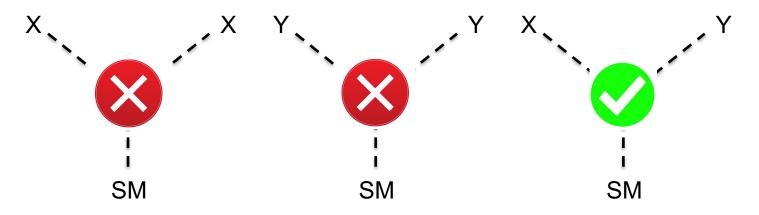

 $\alpha_s/8M_*^2$

 $i\alpha_s/8M_*^2$

IV. WIMP VARIATIONS

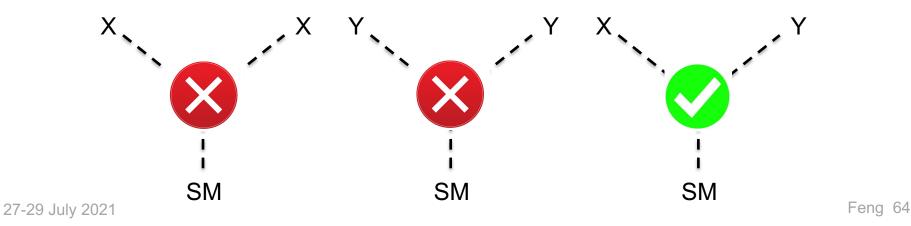
WIMP VARIATIONS

 The WIMP paradigm has spawned many spin-offs that preserve the WIMP miracle to various extents, but have vastly different implications for particle physics and astrophysics.

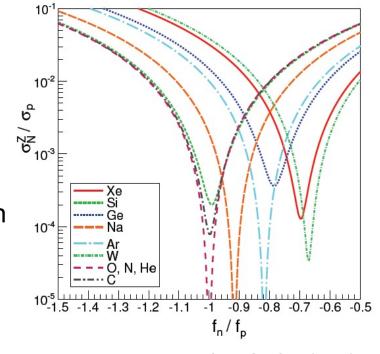


INELASTIC DARK MATTER

- The DAMA signal, whatever its ultimate fate, has been a fantastic driver for new ideas in dark matter.
- A prominent example: inelastic dark matter. Grew out of considerations of another SUSY WIMP candidate, the (messenger) sneutrino, a complex scalar, which could be split into two real scalars.


Han, Hempfling (1997); Hall, Moroi, Murayama (1998); Tucker-Smith, Weiner (2001)

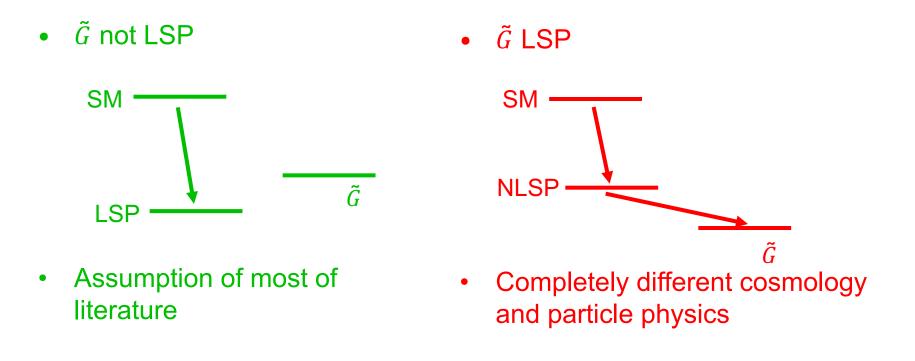
• Consider two highly-degenerate WIMPy particles X and Y, and assume there are only off-diagonal couplings:


INELASTIC DARK MATTER

- Suppose m_X , $m_Y \sim 100$ GeV, but $\Delta = m_Y m_X \sim MeV$.
- In the early universe, and particularly at freeze out, ∆ << T, so X and Y freeze out as usual. Eventually all Y's decay to X's, X is the DM.
- But now, since v ~ 10⁻³, K.E. ~ 100 keV, there is not enough energy for X's to up-scatter to Y's, and so X dark matter escapes all direct and indirect searches, opening up new parameter for other searches.
- For $\Delta \sim 100$ keV, can suppress scattering off of Ge (CDMS), preserve scattering off of I (DAMA), reconcile DAMA with other null results.

ISOSPIN-VIOLATING DARK MATTER

- Recall that DM scattering off nuclei is $\sigma_{\rm A} \sim [~f_{\rm p}\,Z + f_{\rm n}~({\rm A-}Z)~]^2$
- Typically assume $f_n = f_p$, $\sigma_A \sim A^2$.
- But there is no model-independent reason that f_n and f_p are equal, or even that they have the same sign.
- IVDM relaxes this assumption, introduces 1 new parameter: f_n / f_p.

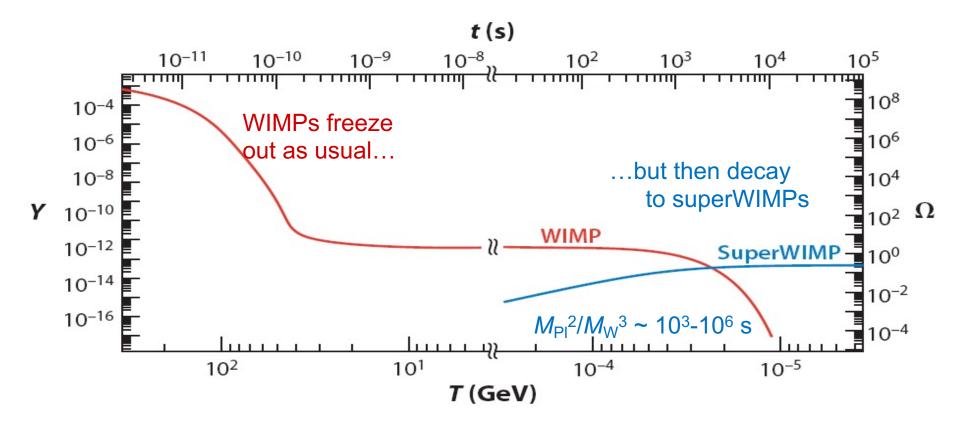


Feng, Kumar, Marfatia, Sanford (2013)

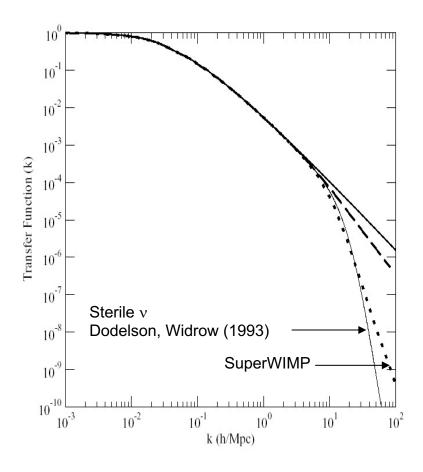
- Can decouple any given isotope by a suitable choice of f_n / f_p , and isotope distributions in each target become important. At one time could reconcile DAMA with all null results with IVDM, but not now.
- Lasting lesson: one should take all comparisons across different target materials and different techniques with a grain of salt.

GRAVITINO DM AND LONG-LIVED PARTICLES

In all supersymmetric models, there is yet another new neutral particle: the gravitino *G̃*. Its mass can be anything from eV to PeV, but its couplings are typically superweak (weaker than weak), as expected for the graviton's partner.

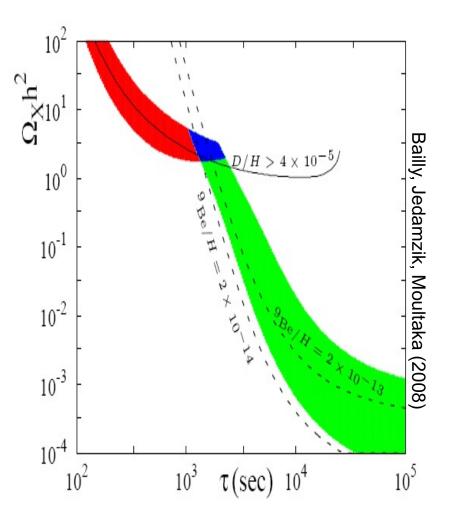


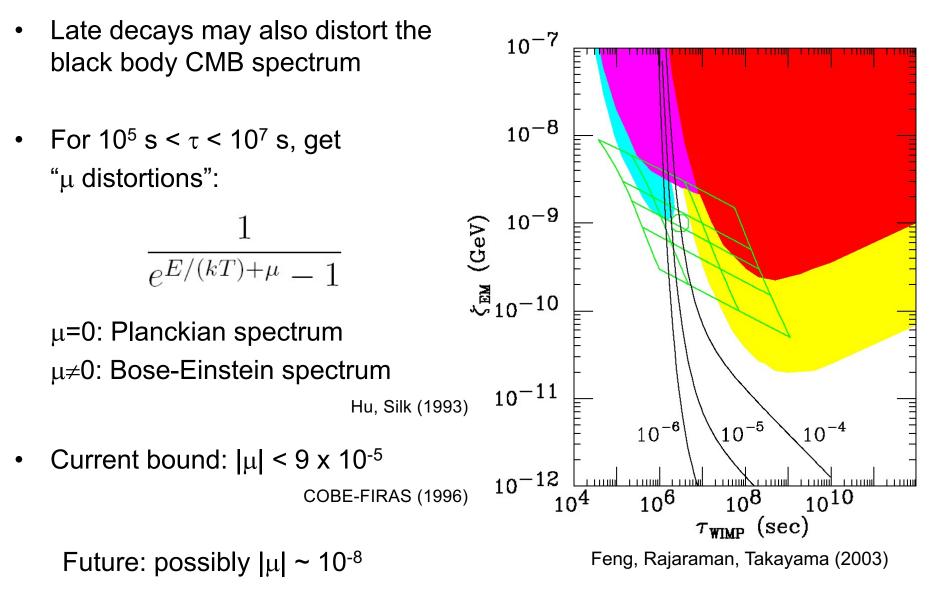
Dine, Nelson, Nir, Shirman (1994, 1995); Dimopoulos, Dine, Raby, Thomas (1996)


FREEZE OUT WITH SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

If the WIMP and superWIMP masses are similar, the superWIMPs naturally inherit the right density through the WIMP miracle, share all the motivations of WIMPs, but DM becomes superweakly interacting.


- SuperWIMPs are produced in late decays with large velocity (0.1c – c).
- This motion prevents them from forming potential wells, suppresses small scale structure.
- Hot DM, like active neutrinos, is excluded, but superWIMPs could be warm DM with cold DM pedigree.
- Also implications for BBN, CMB.


Kaplinghat (2005)

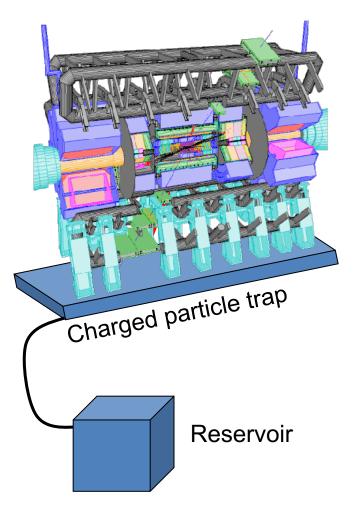
LATE DECAYS AND BBN

- Late decays deposit energy into the Universe, potentially destroy light elements
- Simple way around this is to make decays before T ~ MeV, t ~ 1s
- More ambitious: ⁷Li does not agree with standard BBN prediction
 - Too low by factor of 3, ~5σ at face value
 - May be solved by convection in stars, but then why so uniform?
- Also the standard BBN prediction for ⁶Li may be too low
- Decays after 1 s can possibly fix both

LATE DECAYS AND CMB

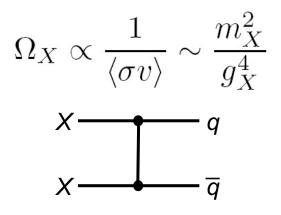
IMPLICATIONS FOR THE LHC

- If DM is a superWIMP, the parent particle is metastable, and can also be charged.
- Signature of new physics is "stable," charged, massive particles, not missing E_T .
- If stable on timescales of seconds to months, can collect these particles and study their decays. Several ideas:
 - Catch sleptons in a 1m thick water tank


Feng, Smith (2004)

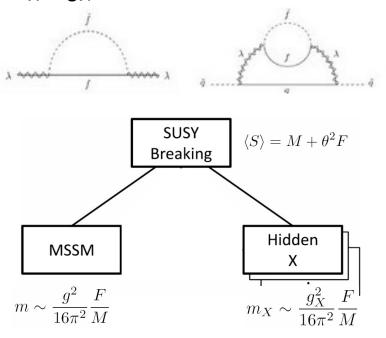
Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)


Dig sleptons out of detector hall walls

De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape (2005)

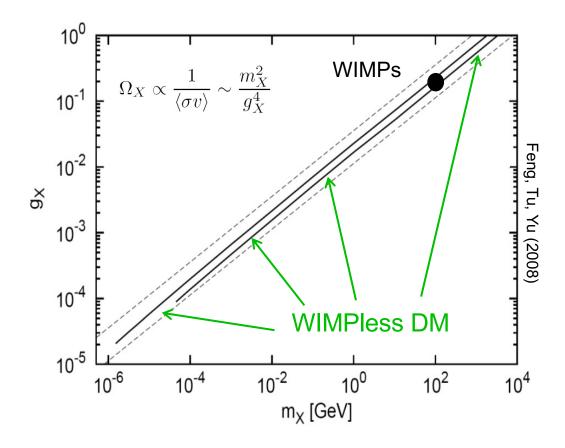
WIMPLESS DARK MATTER


• Recall the WIMP miracle: the relation between Ω_X and annihilation strength is wonderfully simple:

 $m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$

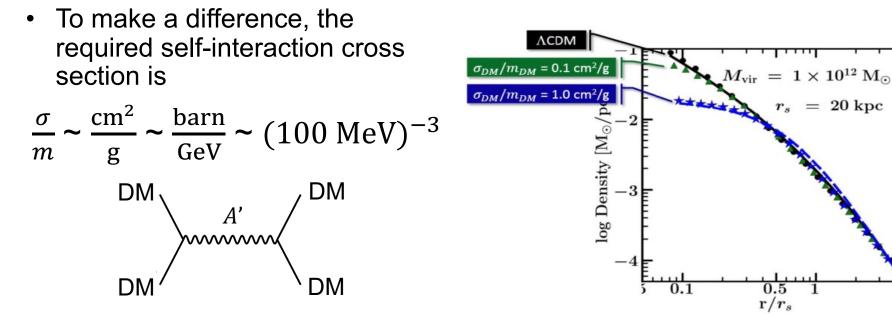
Feng, Kumar (2008)

• Consider SUSY with a hidden sector. In models that suppress flavor violation (GMSB, AMSB...), $m_{\chi} \sim g_{\chi}^2$



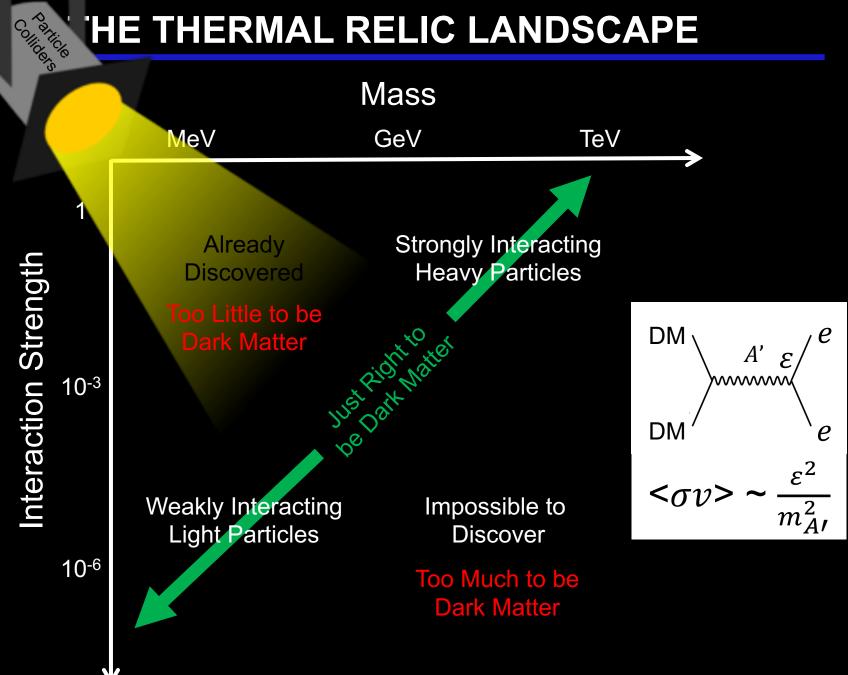
 The hidden sector superpartner masses and gauge couplings can be vastly different from the MSSM, but the thermal relic density is the same.

WIMPLESS DARK MATTER


Feng, Kumar (2008)

 WIMPless miracle: with a hidden sectors, the gauge coupling may not be ~ 1. But light, weakly-coupled DM can also have the correct thermal relic density, opening up a whole new set of dark sector signals in particle physics and cosmology, all with the same WIMP miracle pedigree.

SELF-INTERACTING DARK MATTER


- WIMPless DM (and related scenarios) open up sub-GeV DM, selfinteracting DM, strongly-interacting DM with a host of new implications.
- For example: there are indications from small-scale structure that dark matter may be strongly self-interacting (cuspy halo profiles, etc.)

 This can be explained by a characteristic dark sector mass scale of ~ 10-100 MeV.

Tulin, Yu (2017) Rocha et al. (2012), Peter et al. (2012); Vogelsberger et al. (2012); Zavala et al. (2012)

HE THERMAL RELIC LANDSCAPE

SUMMARY

I. Why WIMPs?

The WIMP miracle, and discrete WIMP miracle imply that WIMPs emerge naturally as stable, cold, collisionless DM candidates with the correct thermal relic density from connections to central problems in particle physics.

II. WIMPs in Supersymmetry

The neutralino is the leading supersymmetric WIMP candidate, with the WIMP miracle realized in a variety of regions of parameter space.

III. WIMP Detection

The WIMP miracle suggests promising signal rates in many direct, indirect, and collider search experiments.

IV. WIMP Variations

Variations on the WIMP theme have new and extremely interesting implications:

Inelastic DM (motivates collider searches) Isospin-violating DM (motivates diversity of direct detection targets) SuperWIMPs (warm DM, BBN, CMB) WIMPless DM (light DM, self-interacting DM, strongly-interacting DM)