# NEW SIGNALS AT FASER AND FASER2

PBC General Meeting, 3 December 2021

Jonathan Feng, UC Irvine



#### FASER

ATLAS

One of 3 far-forward detectors approved for LHC Run 3
 480 m to the east of ATLAS IP; constructed, installed, ready to go
 Active volume: cylinder with 10 cm radius, 1.5 m long

SND: approved March 2021

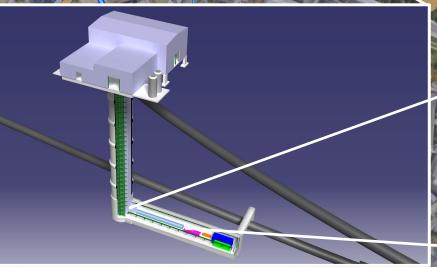
UJ18



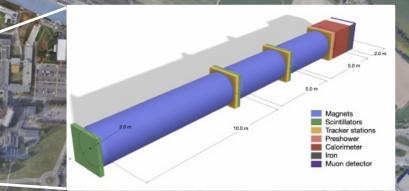
FASER: approved March 2019 LOS FASERv: approved December 2019

SPS

LHC


UJ12

CERN GIS


# **FASER2**

ATLAS

One of ~5 far-forward detectors proposed for the HL-LHC
640 m to the west of the ATLAS IP in the Forward Physics Facility
Active Volume: cylinder with 1 m radius, 20 m long



UJ18



SPS

LHC

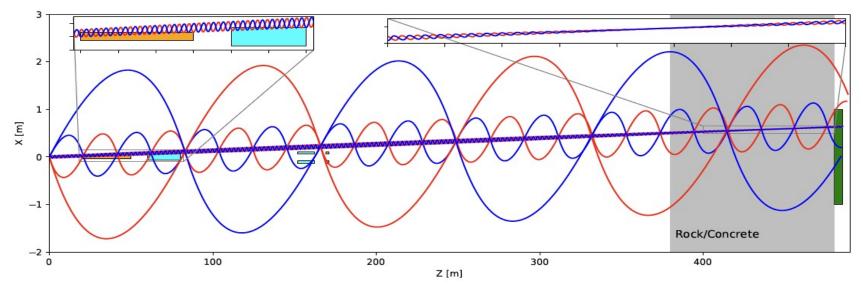
UJ12

# **BSM SIGNALS**

• FASER and FASER2 have discovery prospects for many PBC Benchmarks. For FASER, the dominant signatures considered have been  $A' \rightarrow e^+e^-$ , and  $a \rightarrow \gamma\gamma$ .

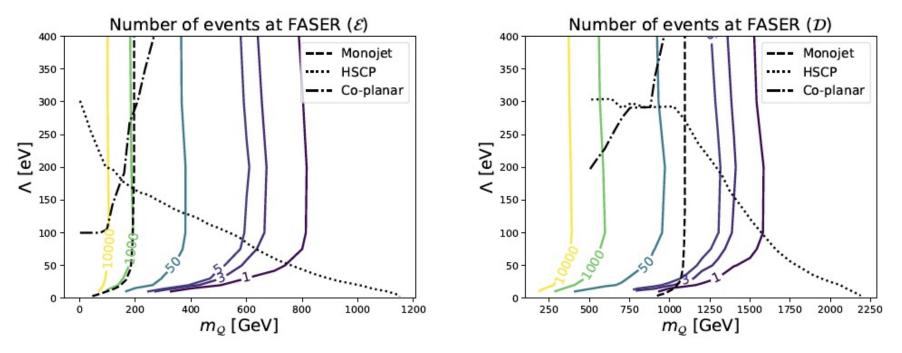
| Benchmark Model                       | Underway | FPF     | References                                                                                 |
|---------------------------------------|----------|---------|--------------------------------------------------------------------------------------------|
| BC1: Dark Photon                      | FASER    | FASER 2 | Feng, Galon, Kling, Trojanowski, 1708.09389                                                |
| BC1': U(1) <sub>B-L</sub> Gauge Boson | FASER    | FASER 2 | Bauer, Foldenauer, Jaeckel, 1803.05466<br>FASER Collaboration, 1811.12522                  |
| BC2: Dark Matter                      | -        | FLArE   | Batell, Feng, Trojanowski, 2101.10338<br>Batell et al., 2107.00666                         |
| BC3: Milli-Charged Particle           | _        | FORMOSA | Foroughi-Bari, Kling, Tsai, 2010.07941                                                     |
| BC4: Dark Higgs Boson                 | -        | FASER 2 | Feng, Galon, Kling, Trojanowski, 1710.09387<br>Batell, Freitas, Ismail, McKeen, 1712.10022 |
| BC5: Dark Higgs with hSS              | -        | FASER 2 | Feng, Galon, Kling, Trojanowski, 1710.09387                                                |
| BC6: HNL with e                       | -        | FASER 2 | Kling, Trojanowski, 1801.08947<br>Helo, Hirsch, Wang, 1803.02212                           |
| BC7: HNL with $\mu$                   | -        | FASER 2 | Kling, Trojanowski, 1801.08947<br>Helo, Hirsch, Wang, 1803.02212                           |
| BC8: HNL with $\tau$                  | -        | FASER 2 | Kling, Trojanowski, 1801.08947<br>Helo, Hirsch, Wang, 1803.02212                           |
| BC9: ALP with photon                  | FASER    | FASER 2 | Feng, Galon, Kling, Trojanowski, 1806.02348                                                |
| BC10: ALP with fermion                | _        | FASER 2 | FASER Collaboration, 1811.12522                                                            |
| BC11: ALP with gluon                  | FASER    | FASER 2 | FASER Collaboration, 1811.12522                                                            |

#### **NEW SIGNALS: QUIRKS**


Kang, Luty (2008)

- Quirks are matter particles charged under a hidden strong force with mass m >>  $\Lambda_{hidden}$ . E.g., m ~ 100 GeV TeV,  $\Lambda_{hidden}$  ~ keV.
- Quirks may also have SM charge and color. They are then pair produced at the LHC, and are connected by a hidden color string.
- For quarks and standard QCD, m << Λ<sub>QCD</sub>, and so it becomes energetically favorable to pair produce new quarks from the vacuum. Quarks hadronized.
- But for quirks, since m >>  $\Lambda_{hidden}$ , it is never energetically favorable to break the string by pair producing quirks from the vacuum: quirks do not hadronize, they oscillate.

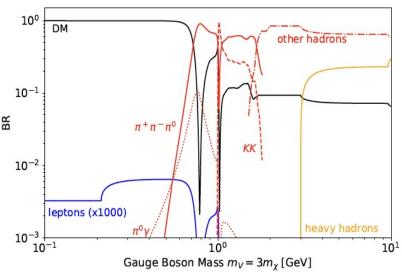
# **QUIRK SIGNATURE**

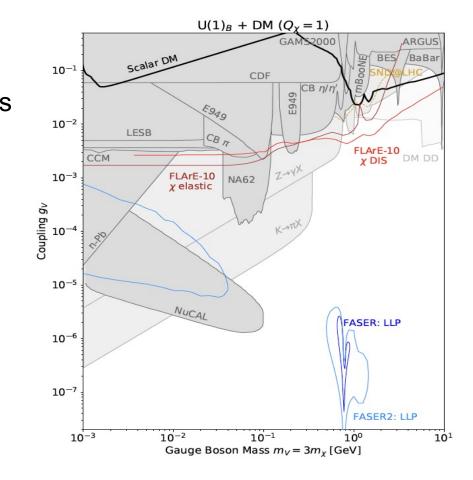

- Of course, the quirk anti-quirk system has low  $p_T$ .
- The pair therefore oscillates, with length scale ~ 1/  $\Lambda_{hidden}$ .
- For a range of  $\Lambda_{hidden}$ , the quirk system travels down the beamline, escaping most LHC detectors, but ultimately leaving (strange!) tracks in FASER.

Li, Pei, Ran, Zhang, 2108.06748



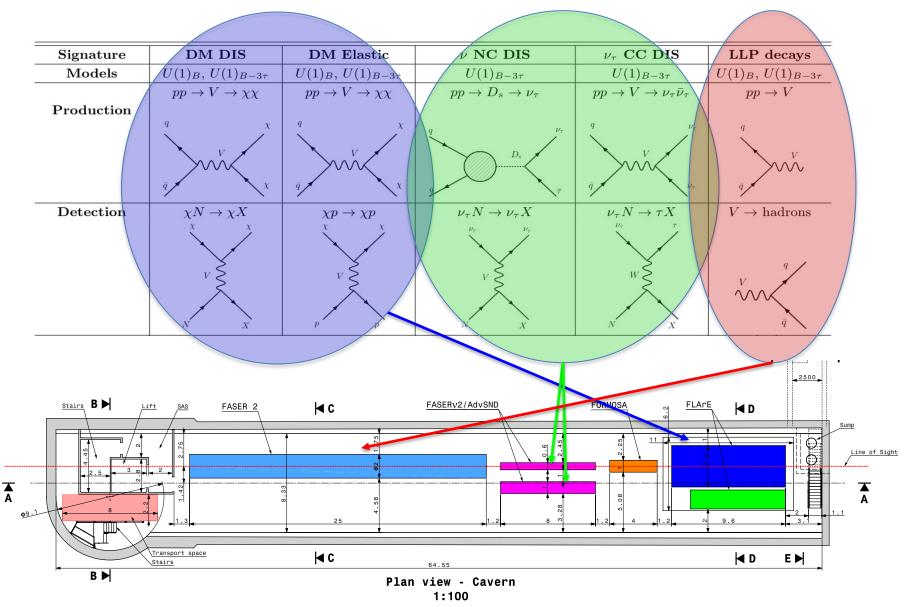
# **QUIRK DISCOVERY PROSPECTS**


- Far-forward detectors at the LHC are ideally suited to search for quirks.
  - Like heavy particles, they require the LHC to be produced
  - Like light particles, they are dominantly produced along the beamline
- ~1000 of events possible at FASER in Run 3




Li, Pei, Ran, Zhang, 2108.06748

### **NEW SIGNALS: B AND B-3τ GAUGE BOSONS**


- Consider a light gauge boson coupled to baryon number
- Produced through  $q\bar{q} \rightarrow V$
- Many interesting hadronic decays  $V \rightarrow \pi^0 \gamma, \ \pi^+ \pi^- \pi^0, \ K^+ K^-, \ K_S \ K_L$
- Greatly expands the standard e<sup>+</sup>e<sup>-</sup>, γγ signatures; similar signatures for "anomaly-free" gauge bosons





Batell, Feng, Fieg, Ismail, Kling, Abraham, Trojanowski, 2111.10343; see also Boyarsky, Mikulenko, Ovchynnikov, Shchutska, 2104.09688

#### SIGNATURES FOR OTHER FPF EXPERIMENTS



Batell, Feng, Fieg, Ismail, Kling, Abraham, Trojanowski, 2111.10343

# PLANS

- The physics case for far-forward experiments at the LHC (FASER, FASER2, FASERv, FASERv2, SND@LHC, Advanced SND, FLArE, FORMOSA, ...) continues to be studied and continues to grow.
- Looking forward to continued progress within the PBC framework and also the Snowmass community exercise.
- FPF meetings
  - FPF Kickoff Meeting, 9-10 Nov 2020, https://indico.cern.ch/event/955956
  - FPF2 Meeting, 27-28 May 2021, https://indico.cern.ch/event/1022352
  - FPF3 Meeting, 25-26 Oct 2021, https://indico.cern.ch/event/1076733
- FPF Short Paper: 75 pages, 80 authors completed in Sept 2021 (2109.10905).
- The FPF White Paper (~200-300 pages) is being prepared to be submitted to Snowmass in February-March 2022.

