# LONG-LIVED PARTICLES AT (FUTURE) COLLIDERS

IAS Program on High Energy Physics (HEP 2022), Hong Kong

17 January 2022

Jonathan Feng, UC Irvine











#### **EXECUTIVE SUMMARY**

- Long-Lived Particles (LLPs) are particles that travel macroscopic distances at colliders and then decay.
- LLPs have long been considered to be exotica, but they are in fact ubiquitous in new physics models.
- The LHC is currently not optimized to discover LLPs, especially light ones; new experiments and the proposed Forward Physics Facility will help.
- Future colliders can improve their discovery potential by including LLP capabilities in their plans from the beginning.

• We have already discovered many LLPs.



• In fact, LLPs have played an essential role in many of the conceptual breakthroughs that established the standard model of particle physics: n,  $\mu$ ,  $\pi^{\pm}$ ,  $K_{L,S}$ , B, ...

#### LLPS IN OUR FUTURE

- The next breakthrough in particle physics is likely to involve LLPs
  - LLPs are ubiquitous in BSM theories, especially those with cosmological significance.
  - LLPs can be detected through a huge variety of signatures, many of which are truly spectacular – a few events can be a discovery.
  - At the LHC, we have not yet reached the full LLP discovery potential, but there are many exciting initiatives now underway and proposed.

## CAVEAT

- This is by now a huge field, and it is impossible to give a complete overview of either the LLP candidates or the experiments proposed to look for them.
- LLPs can emerge in many scenarios. In many BSM models, one can tune a coupling or a mass splitting to be very small to create an LLP.
- In this talk, however, I will highlight scenarios in which LLPs have some independent reason to be long-lived and particularly focus on those that have some interesting cosmological connections.

# **THE NEW PARTICLE LANDSCAPE**



# LLPS FROM WEAK- SCALE PHYSICS

### WEAK-SCALE PHYSICS AND COSMOLOGY

• Particles with  $g \sim O(1)$  and mass  $\sim m_W$  are great DM candidates.



• This simple coincidence, the WIMP Miracle, ties together weak-scale physics and cosmology, and has led to the notion that BSM searches are largely missing  $E_{\tau}$  searches at colliders.

#### LLPS IN STANDARD SUSY

- But this focus on missing  $E_T$  is a vast oversimplification.
- Consider standard (gravity-mediated) supersymmetry. The gravitino has mass ~ 100 GeV, couplings ~  $M_W/M_{\rm Pl}$  ~ 10<sup>-16</sup>.
- $\tilde{G}$  not LSP SM -LSP  $\tilde{G}$
- Assumption of most of literature





 Completely different cosmology and particle physics

#### LLPs IN SUPERWIMP SCENARIOS

Feng, Rajaraman, Takayama (2003)

• In the  $\tilde{G}$  LSP scenario, WIMPs freeze out as usual, but then decay to  $\tilde{G}$  after  $M_{Pl}^2/M_W^2 \sim$  seconds to months.



 The gravitino is superWIMP DM, naturally has the right relic density. But now the WIMP can be, e.g., a charged slepton, implying metastable charged LLPs at colliders.

# LLPs AND ADD-ON DETECTORS

- If we see metastable charged LLPs, we know they must decay.
- We can collect these particles and study their decays.
- Several ideas have been proposed
  - Catch sleptons in a 1m thick water tank (up to 1000/year) and then move them to a quiet place to observe their decays

Feng, Smith (2004)

Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)

- Dig sleptons out of detector hall walls

De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape (2005)



# LLPs IN GAUGE-MEDIATED SUSY

• Scenarios with gauge-mediated SUSY breaking are among the most famous of those predicting LLPs.

Dine, Nelson, Nir, Shirman (1994, 1995); Dimopoulos, Dine, Raby, Thomas (1996); ...

 NLSPs decay to light G LSPs. The G mass and the NLSP decay length are correlated. For G masses ~ keV (motivated, with caveats, by G DM), the decay lengths are macroscopic

$$c\tau_{\rm NLSP} \approx 50 \ {\rm cm} \left(\frac{200 \ {\rm GeV}}{m_{\rm NLSP}}\right)^5 \left(\frac{m_{\tilde{G}}}{\rm keV}\right)^2$$

|              | Neutralino NLSP                           | Slepton NLSP                        |
|--------------|-------------------------------------------|-------------------------------------|
| Prompt       | Prompt photons                            | Multi-leptons                       |
| Intermediate | Displaced photons<br>Displaced conversion | Displaced lepton<br>Track kinks     |
| Long-Lived   | Missing $E_{T}$                           | Time-of-flight<br>High <i>dE/dx</i> |

# LLPs IN ANOMALY-MEDIATED SUSY

Scenarios with anomaly-mediated SUSY breaking give additional interesting LLPs signals.

Randall, Sundrum (1998); Giudice, Luty, Murayama, Rattazzi (1998); ...

- The LSPs are a highly degenerate Wino triplet with  $\Delta m_{loop} >> \Delta m_{tree}$ .
- Typically, there are 2-body decays  ${ ilde\chi}_1^+ o { ilde\chi}_1^0 \pi^+$

and disappearing tracks after ~10cm.  $\aleph$ 

• This is an example of the generic possibility that a symmetry enforces small mass splittings, leading LLPs.



# LLPs IN OTHER WEAK-SCALE MODELS

- By considering a few standard models of weak-scale physics, we have motivated a plethora of possible LLP signatures.
- Of course, there are many other motivated weak-scale models with LLPs.
- In SUSY: e.g., R-parity violating SUSY and compressed SUSY, which have become more motivated as generic, sub-TeV SUSY becomes more constrained.
- Extra dimensional scenarios typically have similar possibilities (e.g., viewing universal extra dimensions as bosonic supersymmetry), and naturally compressed spectra.



# LLPS FROM LIGHT PHYSICS

# HE THERMAL RELIC LANDSCAPE



## **THE NEW PARTICLE LANDSCAPE**



# LIGHT LLP PHENOMENOLOGY

- The advent of dark sectors (along with axion-like particles, light gauge bosons, etc.) highlights a new class of LLPs.
- As an example, consider a dark photon A' with energy  $E \sim \text{TeV}$ , mass  $m \sim 100 \text{ MeV}$ , coupling  $\varepsilon \sim 10^{-5}$ .
- It can be produced in large numbers through the decays of light particles, like pions.
- It passes through matter essentially without interacting: radiation length is (10 cm) ε<sup>-2</sup> ~ 10<sup>9</sup> m, the distance to the moon!
- It decays to visible particles, but only after traveling a long distance.

$$L = v\tau\gamma \sim (100 \text{ m}) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{100 \text{ MeV}}{m}\right]^2 \left[\frac{E}{\text{TeV}}\right]$$

# LIGHT LLPS AT THE LHC

- How can we find light LLPs at colliders?
- Many ideas for new detectors at the LHC
  - Transverse detectors: MoeDAL/MAPP, MilliQan, MATHUSLA, Codex-b, ANUBIS, ...
  - Far-forward detectors: FASER, FASERv, SND@LHC











# **SEARCHES FOR NEW LIGHT PARTICLES**

- If new particles are light and weakly interacting, the existing big LHC detectors are perfectly designed NOT to see them.
- Existing detectors are designed to find new heavy particles. These particles are produced almost at rest and decay isotropically.



- But new light particles are mainly produced in the decays of light particles:
  π, η, K, D and B mesons. These are mainly produced along the beamline, and so the new particles disappear through the holes that let the beams in.
- Clearly we need a detector to exploit the "wasted" σ<sub>inel</sub> ~ 100 mb and cover these "blind spots" in the forward region. If we go far enough away, the proton beams are bent by magnets (it's a circular collider!), whereas the new light particles will go straight.

#### **THE FAR-FORWARD REGION**





# HOW BIG DOES THE DETECTOR HAVE TO BE?



- The opening angle is 0.2 mrad (η ~ 9); cf. the moon (7 mrad). Most of the signal passes through 1 sheet of paper at 480 m.
- TeV dark photons (or any other new particles produced in π, η, K, D, B decay) are far more collimated than shown below, motivating a new, small, fast, cheap experiment at the LHC.



#### FASER TIMELINE

- September 2017: Initial proposal (Feng, Galon, Kling, Trojanowski)
- July 2018: Submitted LOI to CERN LHCC
- October 2018: Approval from ATLAS SCT and LHCb Collaborations for use of spare detector modules
- November 2018: Submitted Technical Proposal to LHCC
- November 2018 January 2019: Experiment funded by the Heising-Simons and Simons Foundations
- March 2019: FASER approved as 8<sup>th</sup> LHC detector by CERN
- March 2021: FASER fully installed, commissioning of the detector begins
- Mid-2022: FASER to begin collecting data in Run 3

## THE FASER DETECTOR

- The signal: nothing incoming and 2 ~TeV, opposite-sign charged tracks pointing back to ATLAS: a "light shining through (100 m) wall" experiment.
- Scintillators veto incoming charged tracks (muons), magnets split the charged tracks, which are detected by tracking stations and a calorimeter.



# FASER INSTALLED IN TI12

# FASER INSTALLED IN TH2

1



# DARK PHOTON SENSITIVITY REACH



- FASER probes new parameter space with just 1 fb<sup>-1</sup> starting in 2022.
- Without upgrade, HL-LHC extends (Luminosity\*Vol) by factor of 3000 could detect as many as 10,000 dark photons.
- Possible upgrade to FASER 2 (R=1m, L=20m) extends (Luminosity\*Vol) by factor of ~10<sup>6</sup> – could detect as many as 3,000,000 dark photons.

# **COLLIDER NEUTRINOS**

- In addition to the possibility of hypothetical new light, weakly-interacting particles, there are also known light, weakly-interacting particles: neutrinos.
- The high-energy ones, which interact most strongly, are overwhelmingly produced in the far forward direction. Before May 2021, no candidate collider neutrino had ever been detected.



- If they can be detected, there is a fascinating new world of LHC neutrinos that can be explored.
  - The neutrino energies are ~TeV, highest human-made energies ever.
  - All flavors are produced ( $\pi \rightarrow \nu_{\mu}$ ,  $K \rightarrow \nu_{e}$ ,  $D \rightarrow \nu_{\tau}$ ) and both neutrinos and antineutrinos.

De Rujula, Ruckl (1984); Winter (1990); Vannucci (1993)

# FASERv AND SND@LHC

ATLAS

OP

SND: approved March 2021

UJ18

FASER: approved March 2019 LOS FASERv: approved December 2019

SPS

LHC

**UJ12** 

CERN GIS

# **FIRST COLLIDER NEUTRINOS**

- In 2018 a FASER pilot emulsion detector with 11 kg fiducial mass collected 12.2 fb<sup>-1</sup> on the beam collision axis (installed and removed during Technical Stops).
- In May 2021, the FASER Collaboration announced the direct detection of 6 candidate neutrinos above 12 expected neutral hadron background events (2.7σ).
- Not the discovery of collider neutrinos, but a sign of things to come.





# LOCATION, LOCATION, LOCATION



#### **NEUTRINO PHYSICS**

- In Run 3 (2022-24), the goals of FASER $\nu$  are to
  - Detect the first collider neutrino.
  - Record ~1000  $v_e$ , ~10,000  $v_{\mu}$ , and ~10  $v_{\tau}$  interactions at TeV energies, the first direct exploration of this energy range for all 3 flavors.
  - Distinguish muon neutrinos from anti-neutrinos by combining FASER and FASERv data, and so measure their cross sections independently.
  - Add significantly to the number of  $\nu_\tau$  and detect the first anti- $\nu_\tau$  .





# FORWARD PHYSICS FACILITY

 The rich physics program in the far-forward region strongly motivates creating a dedicated Forward Physics Facility to house far-forward experiments for the HL-LHC era from 2027-37.

ATLAS

UJ18



SPS

LHC

05

UJ12

Kincso Balazs, CERN CE

# FORWARD PHYSICS FACILITY

- Currently envisioned to house 5 experiments, including upgrades of FASER, FASERnu, and SND, as well as
  - FORMOSA, targeting milli-charged particles
  - FLArE, targeting neutrinos and dark matter
- Very preliminary (class 4) cost estimate for cavern and services: 40M CHF.







## **FPF PLANS**

- The FPF is being studied in both the Physics Beyond Colliders framework at CERN and as part of the Snowmass community exercise in the US.
- FPF meetings
  - FPF Kickoff Meeting, 9-10 Nov 2020, <u>https://indico.cern.ch/event/955956</u>
  - FPF2 Meeting, 27-28 May 2021, https://indico.cern.ch/event/1022352
  - FPF3 Meeting, 25-26 Oct 2021, https://indico.cern.ch/event/1076733
  - FPF4 Meeting, 31 Jan -1 Feb 2022, <u>https://indico.cern.ch/event/1110746</u>
- FPF Short Paper: 75 pages, 80 authors completed in Sept 2021 (2109.10905).
- The FPF White Paper (~200-300 pages) is being prepared to be submitted to Snowmass in February-March 2022.

#### **EXECUTIVE SUMMARY**

- Long-Lived Particles (LLPs) are particles that travel macroscopic distances at colliders and then decay.
- LLPs have long been considered to be exotica, but they are in fact ubiquitous in new physics models.
- The LHC is currently not optimized to discover LLPs, especially light ones; new experiments and the proposed Forward Physics Facility will help.
- Future colliders can improve their discovery potential by including LLP capabilities in their plans from the beginning.