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INTRODUCTION

« Long-Lived Particles (LLPs) are particles that are effectively stable or
travel an observable distance before they decay.
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« LLPs have played an essential role in many of the conceptual
breakthroughs that established the standard model: e, p, n, u, K, v, B, ...

 LLPs are also likely to play an essential role in the next breakthrough

that takes us beyond the standard model of particle physics.
19 June 2023 Feng 2



INTRODUCTION

 LLPs are also likely to play an essential role in the next breakthrough
that takes us beyond the standard model. Why?

— LLPs are ubiquitous in BSM theories, especially those with cosmological
significance.

— LLPs can be detected through a huge variety of signatures.

— Many of these signals are truly spectacular — a few events can be a
discovery.

— For existing experiments, we have not yet reached the full LLP discovery
potential.

— LLPs present many opportunities for new experiments, some of which
are already bearing fruit.

« LLPs have become a topic of great interest. Here I'll give a highly
personal summary of my reasons for optimism; for more, see the
LLP13 Workshop, taking place at CERN now through Friday.
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THE PARTICLE LANDSCAPE
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LESSONS FROM OUR PAST

 We are not now in a golden age of particle physics.

« But particle physics is still fascinating, and the possibilities for deep
connections to cosmology have never been stronger.

« The discovery of new particles is the gold standard for progress in
particle physics. (Precision measurements are also very important.)

« Buoyed by past successes, we have been looking for strongly-
interacting heavy particles that decay quickly, and this should continue.

« But typically, unless these are in a narrow window of masses (e.g., ~2-
4 TeV for gluinos), we will not find them in the next two decades. And
the most robust problems, neutrino masses and dark matter, naturally
point toward very weakly-interacting particles.

« To bring us to a new golden age, we need to try new things and
diversify our searches for BSM physics without breaking the bank. (As
we will see, LLPs are currently a very good investment!)
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THE LLP LANDSCAPE
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LLPS FROM
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WEAK-SCALE PHYSICS AND LLPS

Why should there be LLPs at the weak scale? After all, the natural decay
length is ct ~ ¢/m, ~ 107" m!

« But the gauge hierarchy problem = new physics at 100 GeV, and
precision EW (LEP) = no new physics below few TeV in 4-pt interactions

Gauge Hierarchy Precision EW
SM SM
Higgsf  new )Higgs new
particle particle
S SM

« Simple solution: impose a discrete parity, so all interactions require pairs
of new particles.

« This makes the lightest new particle stable: an LLP. This is a general
argument. It may be augmented in specific contexts, e.g., in SUSY, p

decay - R-parity = stable LSP. ... | ow 2003): Wudka (2003); Farrar, Fayet (1974)
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WEAK-SCALE PHYSICS AND COSMOLOGY

 What good is a stable weak-scale state? Dark matter!
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« This simple coincidence, the WIMP Miracle, ties together weak-scale
physics, LLPs, and cosmology, and has led to the prominence of missing
E+ searches and DM at colliders.
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LLPS IN STANDARD SUSY

» But this focus on missing E is a vast oversimplification.

« Consider standard (gravity-mediated) supersymmetry. The gravitino has
mass ~ 100 GeV, couplings ~ My, /Mp; ~ 10-16 .
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LLPs IN SUPERWIMP SCENARIOS

 Inthe G LSP scenario, WIMPs freeze out as usual, but then decay to G
after M5,/M3, ~ seconds to months.
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* The gravitino is superWIMP DM, naturally has the right relic density. But
now the WIMP can be charged, implying metastable charged LLPs at
colliders.
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LLPS AND AUXILIARY DETECTORS

» If we see metastable charged LLPs, we
know they must decay.

« We can collect these particles and study
their decays.

» Several ideas have been proposed

— Catch sleptons in a 1m thick water
tank (up to 1000/year) and then move
them to a quiet place to observe their

decays Feng, Smith (2004)

— Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004) Reservoir

— Dig sleptons out of detector hall walls
De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape (2005)
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LLPS IN OTHER SUSY MODELS

« SuperWIMPs lead to very long lifetimes, but there is a continuum of
possibilities in SUSY models (GMSB), with the lifetime controlled by the

gravitino mass. -
200 GeV ( me )2
TMNLSP keV
Dine, Nelson, Nir, Shirman (1994); Dimopoulos, Dine, Raby, Thomas (1996)

| Neutralino NLSP Slepton NLSP

cTNLsp ~ 90 cm (

Prompt Prompt photons Multi-leptons
Intermediate I;)lsplaced photoqs Dlsplacedllepton

Displaced conversion Track kinks

: . Time-of-flight

Long-Lived Missing Et High dE/dx

* In other SUSY models (AMSB), naturally small degeneracies lead to other
remarkable signals, e.g., disappearing tracks from %" — i7",

Randall, Sundrum (1998); Giudice, Luty, Murayama, Rattazzi (1998); Feng, Moroi, Randall, Strassler, Su (1999)
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LLP SIGNATURES AT ATLAS AND CMS

 These models lead to many possible signatures, which are
spectacular, if one is looking for them. Requires excellent knowledge

of detectors, dedicated triggers, special reconstruction methods, ...

19 June 2023

/

_ disappearing or
displaced kinked tracks
multitrack vertices '

displaced leptons,
lepton-jets, or
lepton pairs

W,
1/
/4
!
oy, sas="
LI R, e &
Lo
s SIS o
- D \ .
0' .

+ trackless,

multitrack vertices in the
muon spectrometer

.

-
s

| low-EMF jets

non-pointiﬁg
(converted) photons

emerging jets

quasi-stable
charged [{articles

(610z J1oded 8Nym 411 6@ ‘@8s) |lossny

Feng 15



LLPs IN OTHER WEAK-SCALE MODELS

« By considering a few standard models of weak-scale physics, we
have motivated a plethora of possible LLP signatures.

« Of course, there are many other motivated weak-scale models with
LLPs.

* In SUSY: e.g., R-parity violating SUSY and compressed SUSY,
which have become more motivated as generic, sub-TeV SUSY
becomes excluded.

« Extra dimensional scenarios typically have similar possibilities (e.g.,
viewing universal extra dimensions as bosonic supersymmetry),

and naturally compressed spectra.

« Many other motivations and cosmological connections:
leptogenesis, neutrino masses, etc.
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DARK SECTORS

Dark matter may be part of a dark sector,
with its own set of forces. What do we
know about its properties?

In general, nothing. But suppose DM is
produced in the dark sector just as we
discussed above for WIMPs in the visible
sector:

1 m3-
(ov) g%

WIMP Miracle: gy~ 1, my~ 100 GeV >
right abundance.

QXoc

WIMPless Miracle: But with a dark
sector, we don't need to fix gy ~ 1. The
dark sector can have lighter particles and
weaker interactions and still have the
right abundance.

Boehm, Fayet (2003); Pospelov, Ritz, Voloshin (2007)

19 June 2023 Feng, Kumar (2008)
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PORTALS

« Dark sectors need not talk with us. But if they do, what are
the most likely non-gravitational interactions?

« Suppose the dark sector has U(1) electromagnetism. There
are infinitely many possible SM-dark sector interactions, but
one is induced by arbitrarily heavy mediators:

= F FH - -

: Fy i FY

« ltis “most likely” because it is non-decoupling. Cf. M2

 ltis also naturally small, since it is induced by a loop.
Holdom (1986)
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DARK PHOTON, DARK HIGGS, HNLS

« This provides an organizing principle that motivates specific examples of
new, weakly interacting light particles. There are just a few options:

—> dark photon, couples to SM fermions with suppressed couplings
proportional to charge: €4¢.  Hoidom (1986)

-~ hThelop-- - -

—> dark Higgs boson, couples to SM fermions with suppressed coupling
proportional to mass: sin 0 M¢.  pat wilczek (2006)

. Spin 1/2 -—---thD

- Heavy neutral leptons, mixes with SM vs with suppressed mixing sin 0.
19 June 2023 Feng 20
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LIGHT LLP PHENOMENOLOGY

Dark sectors, along with axion-like particles, light gauge bosons, etc.,
have highlighted a new class of LLPs: light, neutral particles, with
extremely weak interactions and fascinating phenomenology.

Because they are light, they may be produced in the decay of both heavy
and light SM particles (and also in other ways).

LLP LLP

~
N LLP
Y

Because they are very weakly-interacting, they pass through matter

without interacting, but then may visibly decay after a long distance.
e+

A L =v7vy ~ (100 m) [

1071 1100 MeV1? [ E
TeV

€ m
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THE LIFETIME FRONTIER
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SEARCHES FOR LIGHT LLPS

BSM physics has been re-invigorated by new ideas for LLP searches.

Many large community studies (LLP Community, PBC at CERN, Snowmass
in the US, ...), and many new experiments have been proposed for labs
around the world.
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CURRENT EXPERIMENTAL SEARCHES

« The sensitivities of ongoing and
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FIXED TARGET EXPERIMENTS

« Old fixed target experiments (suitably re-
interpreted) set constraints on light LLPs.

« At CERN, ongoing experiments at the SPS
(NAG2, NA64) have set world-leading limits,
and proposed experiments (SHiP,
SHADOWS) have sensitivity far into new
parameter space in many models.

\ IS
SHADOW
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DEDICATED TRANSVERSE LHC EXPERIMENTS

 The LHC provides unique
opportunities at the energy frontier.
Several ongoing and proposed
detectors are dedicated to searching
for LLPs and milli-charged particles

at large angles to the beamline.

N ILLIGA
MoeDAL/MAPP, MilliQan, MATHUSLA, 91'
Codex-b, ANUBIS, ... MilliQan Collaboration (2104.07151)
o Multi-layer tracker % :“J‘J\‘vmi“j‘,!v‘f‘y"f | | ,-VJ
Double layer tracker | ) ‘ 3 — oot {, b L?:} : 4 .J
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/ﬂ /," 60 ‘ §~ ‘:Jj
[ -.*':’:.’:--..’:.“‘i".';‘?;“‘.‘.‘ ............... l._-. Vi
CMS X ~68 m 100 m shield veto
MATHUSLA White Paper (2203.08126) CODEX-b White Paper (2203.07316)
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https://arxiv.org/abs/2203.08126
https://arxiv.org/abs/2203.07316
https://arxiv.org/abs/2104.07151

DEDICATED FORWARD LHC EXPERIMENTS

* In the last few years, we've increasingly realized that the large LHC
detectors are beautifully optimized to discover new heavy particles, but
also beautifully optimized to miss new light particles.

De Rujula, Ruckl (1984)

* Heavy particles are produced at low velocity and then decay roughly
isotropically to other particles.

« But high-energy light particles are dominantly produced in the forward
direction and escape through the blind spots of existing detectors.

— This is true for all known light particles: pions, kaons, D mesons, neutrinos.

— Itis also true in many models for many hypothetical new particles: dark
photons, dark Higgs bosons, HNLs, ALPs, light gauge bosons, ...

« These blind spots are the Achilles heels of the large LHC detectors.
19 June 2023 Feng 27



PRE-EXISTING TUNNELS FOR FORWARD EXPTS

Feng, Galon, Kling, Trojanowski (2017)
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SIGALS AT FASER

* LLPs: Nothing incoming and 2 ~TeV, opposite-sign charged tracks pointing back to
the ATLAS IP: a “light shining through (100 m-thick) wall” experiment.

« Collider neutrinos: Nothing incoming and a high energy muon passing through the
rest of the detector from v, N — uX.

« Scintillators veto incoming charged tracks (muons), magnets split the charged
tracks, which are detected by tracking stations and a calorimeter.

Scintillators =

.
ws®
. .

y 1
Calorimeter

Baseplates
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DARK PHOTON RESULTS

« After unblinding, no events seen in signal region, FASER sets limits on
previously unexplored parameter space.

*Along with new o 1 EMini s Wdfw%w UL V VAT \/W \}ﬁ
results from NAG2 N :
st : | 217
these are the first = L,
new probes of the == Preliminary —
thermal relic region S ) _L=2701"
from low coupling TR, o
since the 1990’s. - [ Existing Limits :
= E NAG62 (ee) Limit (Preliminary)
= Relic Target m X:O.GmA,, 05=0.1
- Background-free -
analysis bodes well .
for future sensitivity. 10 E
Expect factor of ~10 1
more |UminOSity in . CERN-FASER-CONF-2023-001 ) _
Run 3 from 2022-25. 10 10?
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https://cds.cern.ch/record/2853210

FASER

COLLIDER NEUTRINO RESULTS

With 2022 Run 3 data alone (~30 fb1),
first direct observation of collider
neutrinos: 153 events (FASER) + 8
events (SND@LHC), ~0 background.
Signal significance of ~160
— Muon charge - both v and v

Almost certainly these include the highest
energy v and v from a human source
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https://arxiv.org/abs/2303.14185
https://arxiv.org/abs/2305.09383

NEUTRINOS FROM EMULSION IN FASERv

Much more to come: this analysis does not even use the emulsion data!
Analysis underway, but already many neutrino candidates, including this event,
“NC which is likely the highest energy v, interaction ever observed

Side View
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LOCATION, LOCATION, LOCATION

FASER and SND@LHC

“Tabletop,” ~ 2 years™,
~$1M

161 neutrinos

*with essential help from ATLAS, LHCDb!

All previous
collider detectors

WSS==  Building-size, decades,
Unambiguous discovery, ~$1B
opening up the new field of .
neutrino physics at colliders 0 neutrinos
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https://cds.cern.ch/record/2851822

FPF EXPERIMENTS

At present there are 5 experiments being designed to explore the
breadth of physics topics.

— Millions of TeV-energy neutrinos will provide new probes of neutrino
properties, QCD, and astroparticle physics.

— 0O(10%) times greater sensitivity for new particle searches.

FASER2 FASERv2 FORMOSA
magnetized spectrometer emulsion-based plastic scintillator array
for BSM searches neutrino detector for BSM searches
ssssss .\BH JEE FASER\ Hc FASERv2/Adv D. FORMOSA‘ . ykp
‘ P A o
1" A N 5 | (2 /
T ,EH, i
: = |

1 I = Q"
kc 645 / HD E" ol
Planfiew - Cavern
1:100
AdvSND FLArE

electronic LAr based
neutrino detector neutrino detector
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A CAUTIONARY TALE

« Sometimes to look forward, it pays s

to first look back.

« 2021 was the 50" anniversary of
the birth of hadron colliders.

* In 1971, CERN'’s Intersecting
Storage Rings (ISR), with a
circumference of ~1 km, collided
protons with protons at center-of-
mass energy 30 GeV.
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ISR’S LEGACY

* During ISR’s 50" anniversary, there were many
fascinating articles and talks by eminent physicists
looking back on the ISR’s legacy.

— “Enormous impact on accelerator physics, but sadly little
effect on particle physics.” — Steve Myers, talk at “The 50th
Anniversary of Hadron Colliders at CERN,” October 2021.

— “There was initially a broad belief that physics action would
be in the forward directions at a hadron collider.... It is easy
to say after the fact, still with regrets, that with an earlier
availability of more complete... experiments at the ISR,
CERN would not have been left as a spectator during the
famous November revolution of 1974 with the J/p discoveries
at Brookhaven and SLAC .” — Lyn Evans and Peter Jenni,
“Discovery Machines,” CERN Courier (2021).

« Bottom line: The collider was creating new forms of
matter (charm), but the detectors focused on the
forward region (along the beamline) and so missed
them. Let’s not follow this precedent!
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SUMMARY

 LLPs are likely to play an essential role in the next breakthrough
that takes us beyond the standard model.

19 June 2023

LLPs are ubiquitous in BSM theories, especially those with
cosmological significance.

LLPs can be detected through a huge variety of signatures.

Many of these signals are truly spectacular — a few events can be a
discovery.

For existing experiments, we have not yet reached the full LLP
discovery potential.

LLPs also present many opportunities for new experiments, some
of which are already bearing fruit.
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