COLLIDER SEARCHES FOR X17 AND OTHER LIGHT GAUGE BOSONS

52nd International Symposium on Multiparticle Dynamics Gyöngyös, Hungary, 25 August 2023

Jonathan Feng, University of California, Irvine

THE ATOMKI ANOMALY

- The ATOMKI ⁸Be is the most interesting anomaly to appear in the last several years.
- Key considerations for a BSM theorist
 - $\sim 7\sigma$ statistical significance not likely to disappear with more data
 - A bump, not a general excess
 - Rises and falls as one goes through resonance
 - Fit improves drastically with the introduction of a new particle
 - No compelling SM explanation Zhang, Miller (2017); Viviani et al. (2021)
 - No experimental problem identified

• And last, in general terms, it fits beautifully with current ideas for BSM physics and cosmology that motivate weakly interacting, light particles.

CONFIRMATIONS OF THE ATOMKI ANOMALY

- The ⁸Be anomaly has now been strengthened by supporting observations in other nuclear decays, and other experiments
 - ⁴He from ATOMKI 2019
 - ¹²C from ATOMKI 2022
 - ⁸Be from HUS 2023 (reported here!)

See talks of Kraznahorkay, Anh

- The opening angle excess changes exactly as required for the X17 explanation
- The ⁸Be anomaly has also generated many works on possible BSM interpretations
 - It is not at all easy to explain all of these data without violating 70 years of constraints on ~17 MeV particles
 - X cannot be a scalar
 - X cannot be a dark photon

Feng, Fornal, Galon, Gardner, Smolinsky, Tait, Tanedo, 1604.07411, *Phys. Rev. Lett.* 117, 071803 (2016); 1608.03591, *Phys. Rev. D* 95, 035017 (2017)

THE PROTOPHOBIC GAUGE BOSON

- One explanation that does work is the protophobic gauge boson.
- Among the dominant constraints on 17 MeV particles are null results from searches for exotic pion decays π⁰ → X γ → e⁺ e⁻ γ.

- This is eliminated if $Q_u X_u Q_d X_d \approx 0$ or $2X_u + X_d \approx 0$ or $X_p \approx 0$.
- A protophobic gauge boson with couplings to neutrons and electrons, but suppressed couplings to protons and pions, can explain the ⁸Be signal without violating other constraints, and it simultaneously explains both the location of the ⁴He excess *and* the size of the excess.

Feng, Fornal, Galon, Gardner, Smolinsky, Tait, Tanedo (2016); Feng, Tait, Verhaaren (2020)

LIGHT GAUGE BOSONS AT COLLIDERS?

- X17 and other light, weakly interacting gauge bosons are produced in large numbers at the LHC and other colliders.
- Unfortunately, ATLAS, CMS, and the other large detectors are optimized to detect heavy particles, which are produced at low velocity and then decay roughly isotropically to other particles.

- But high-energy light particles are dominantly produced in the forward direction and escape through the blind spots of these detectors.
 - This is true for all known light particles: pions, kaons, D mesons, neutrinos.
 - It is also true for many hypothetical new particles: X17 gauge bosons, dark photons, dark scalars, HNLs, ALPs, milli-charged particles, dark matter, ...
- These blind spots are the Achilles heels of the large LHC detectors.

FASER: FORWARD SEARCH EXPERIMENT

FASER AND THE LHC

FULLY INSTALLED FASER DETECTOR

SIGNALS AT FASER

- Light gauge bosons: Nothing incoming and 2 ~TeV, e+/e- tracks pointing back to the ATLAS IP: a "light shining through (100 m-thick) wall" experiment.
- Collider neutrinos: Nothing incoming and a high energy lepton seen in the detector from $v_{e,\mu}N \rightarrow (e,\mu)X$.
- Scintillators veto incoming charged tracks (muons), magnets split the charged tracks, which are detected by tracking stations and a calorimeter.

COLLIDER NEUTRINO RESULTS

- Neutrinos provide a proof of principle for BSM searches
 - $\begin{array}{rcl} &-& \pi^{\pm} \rightarrow \nu_{\mu} \\ &-& \pi^{0}, \eta \rightarrow A', X17, \dots \end{array}$
- After unblinding 2022 data, we found 153 neutrino signal events
 - Estimated background: < 1 event
- 1st direct observation of collider neutrinos; of great interest on their own
 - Signal significance of ~16σ
 - Muon charge \rightarrow both ν and $\bar{\nu}$
 - These include the highest energy ν and ν̄ interactions ever observed from a human source

FASER Collaboration (2303.14185, Physical Review Letters)

LIGHT GAUGE BOSON RESULTS

- After unblinding 2022 data, no events seen, FASER excluded previously unexplored parameter space for both dark photons and B-L gauge bosons.
- First new probe of light gageug bosons from low coupling since the 1990's (roughly 30 times the sensitivity of previous experiments).

• These searches rely on production in π^0 decay, η decay, and bremsstrahlung off protons. For the protophobic X17, only η decay is operative, and we do not yet probe new parameter space, but ~10 times more luminosity and other improvements are expected by 2025.

SUMMARY

- The ATOMKI ⁸Be is the most interesting anomaly to appear in the last several years.
- The original anomaly is now supported by additional observations in ⁴He, ¹²C, and at another facility.
- Tests from other sources, other approaches are of paramount importance; see the many other talks at this conference.
- Collider searches for new light gauge bosons are now underway at the LHC at the FASER experiment.
- Based on 2022 data, new bounds on light dark photons and B-L gauge bosons have been announced recently by FASER.
- For the protophobic X17, we do not yet probe new parameter space, but we expect ~10 times more luminosity and other improvements in LHC Run 3 by 2025.