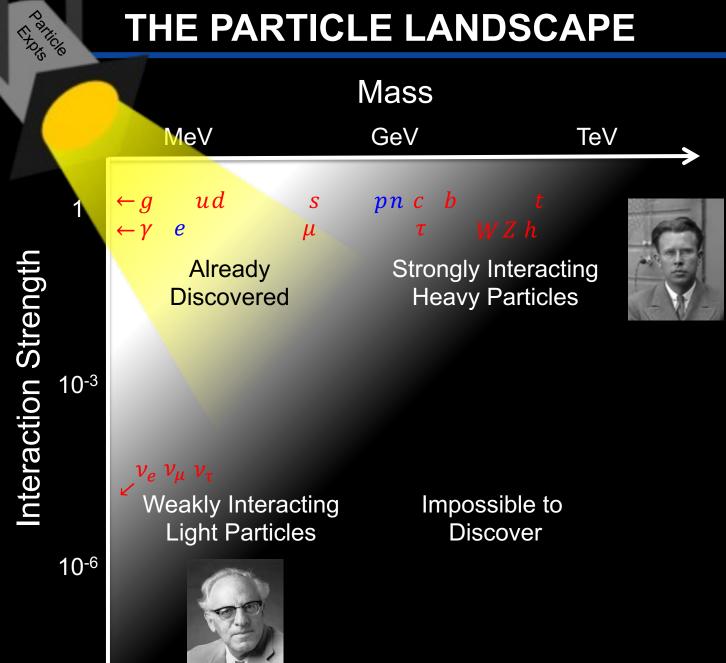
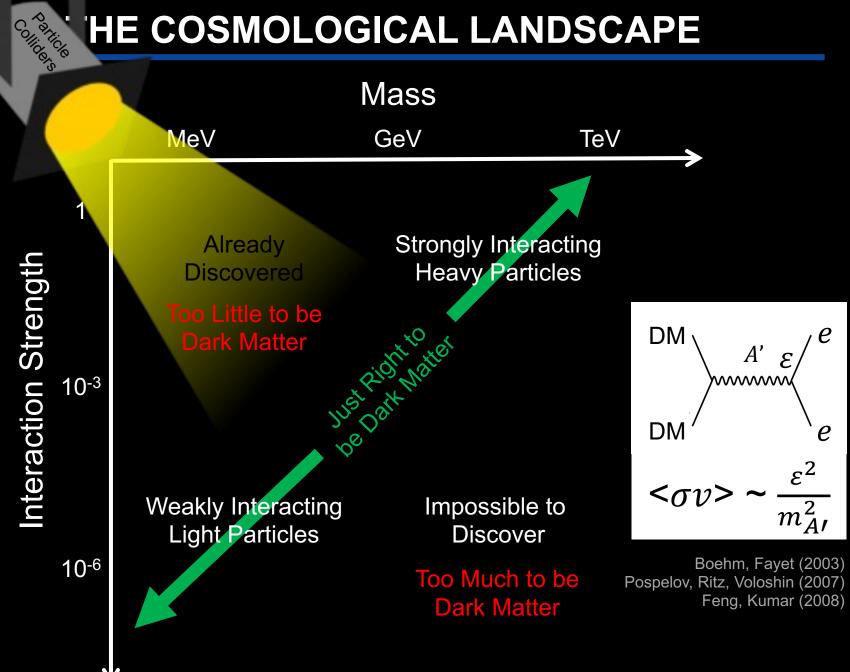

THE DAWN OF MULTI-MESSENGER COLLIDER PHYSICS

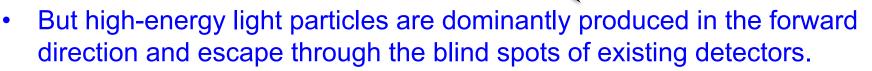
Maryland Johns Hopkins Joint Particle Physics Seminar Jonathan Feng, UC Irvine, 8 May 2024



LIFETIME OF THE LHC


- The LHC has been a focus of particle physics for as long as most of us can remember. Its lifetime is my (professional) lifetime:
 - 1993 SSC canceled.
 - 2010: LHC starts.
 - 2040s: LHC ends.
- But the LHC is still in its youth!
 - a postdoc in terms of years
 - a kindergartener in terms of integrated luminosity
- Are we using the LHC to its full potential? If not, what can we do to enhance its discovery prospects?

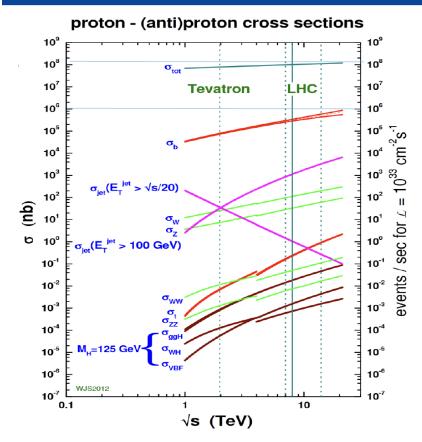
THE PARTICLE LANDSCAPE


HE COSMOLOGICAL LANDSCAPE

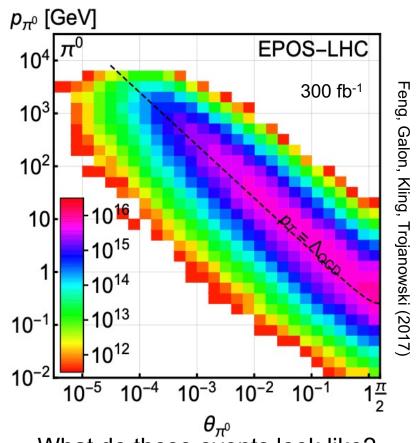
FORWARD PHYSICS

- In 2017, we realized that the large LHC detectors, while beautifully optimized to discover new heavy particles, are also perfectly configured to miss new light particles.
 Feng, Galon, Kling, Trojanowski (2017)
- Heavy particles are produced at low velocity and then decay roughly isotropically to other particles. W, Z, t, h

 $\pi, \mathbf{K}, \mathbf{D}, \nu_e, \nu_\mu, \nu_\tau$

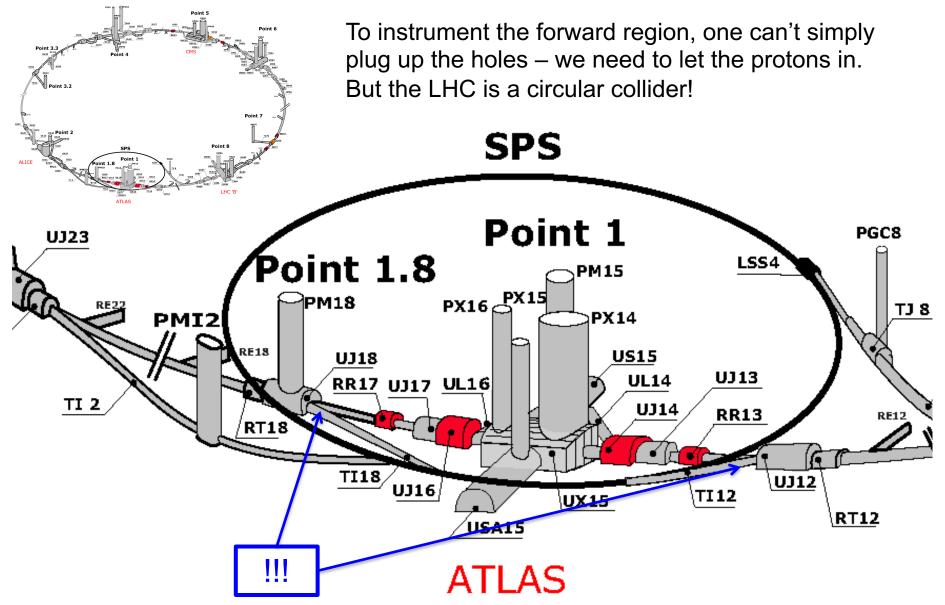

- This is true for all known light particles: pions, kaons, *D* mesons, neutrinos.
- It is also true for many hypothetical new particles, especially those motivated by neutrino mass and dark matter.
 De Rujula, Ruckl (1984)

A', a, mCPs, χ, ...

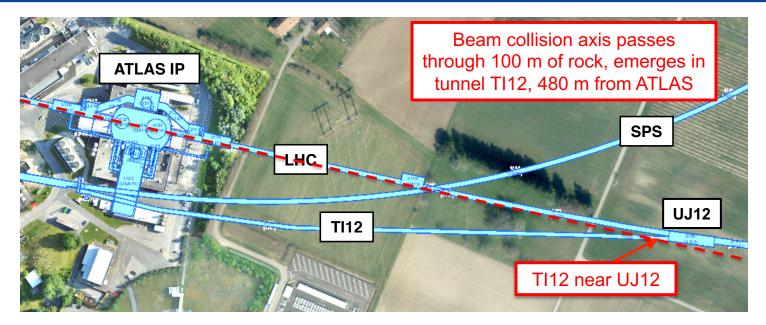

Feng 5

• These blind spots are the Achilles heels of the large LHC detectors. 8 May 2024

LIGHT PARTICLES AT THE LHC

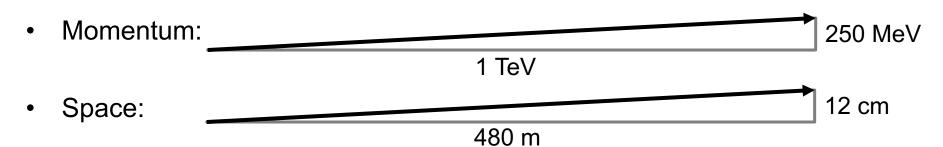


- Most searches have focused on processes with σ ~ fb, pb.
- But the total cross section is $\sigma_{tot} \sim 100$ mb, which is typically wasted in new physics searches.

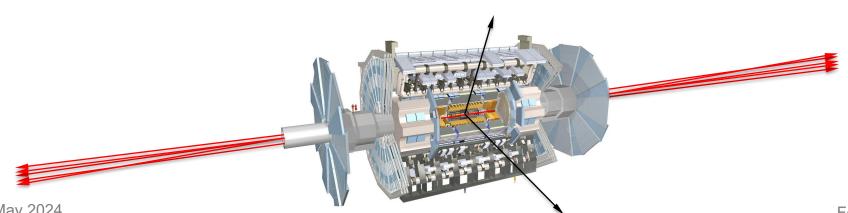


- What do these events look like? Consider pions.
- Enormous event rates. Typical p_T ~ 250 MeV, but many with p ~ TeV within 1 mrad (η > 7.6) of the beamline.

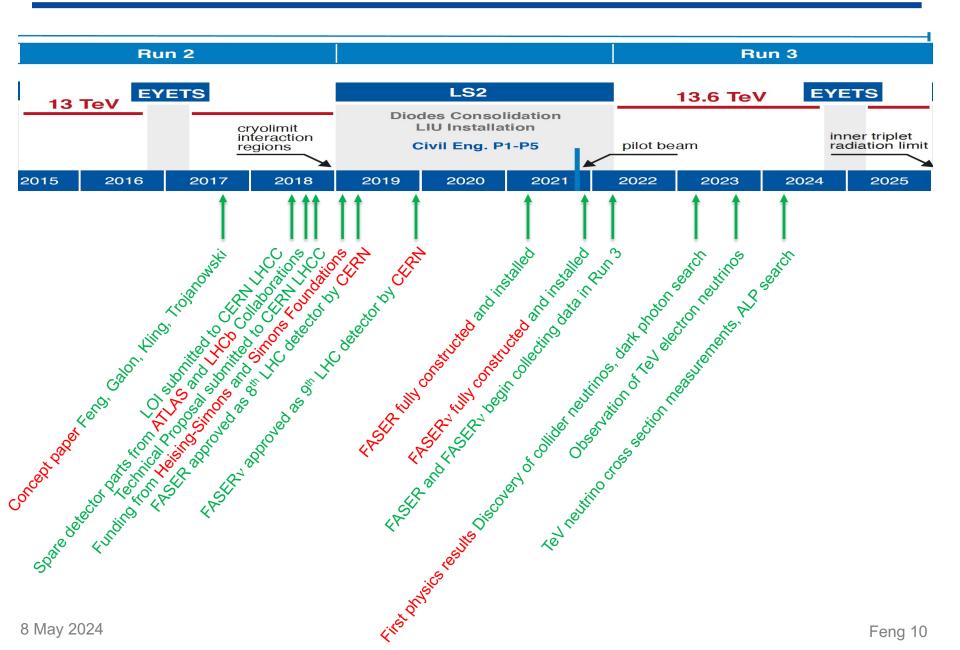
MAP OF THE LHC



THE FORWARD REGION



HOW BIG DOES THE DETECTOR HAVE TO BE?



- The opening angle is 0.2 mrad (the moon is 7 mrad).
 Even 480 m away, most of the signal passes through an 8.5" x 11" (A4) sheet of paper.
- Neutrinos and many new particles are therefore far more collimated than shown below, motivating a relatively small, fast, and inexpensive experiment at the LHC: the ForwArd Search ExpeRiment (FASER).

FASER AND FASER ν TIMELINE

THE FASER COLABORATION NOW

97 collaborators, 26 institutions, 10 countries

PREPARATION OF THE FASER LOCATION

- The beam collision axis or line of sight (LOS) was located to mm accuracy by the CERN survey department. To place FASER on this axis, a trench was required to lower the floor by 46 cm.
- The trench was completed by an Italian firm just hours before COVID shut down CERN in March 2020.

FASER AND THE LHC

FASER INSTALLATION

8 May 2024

THE FASER DETECTOR

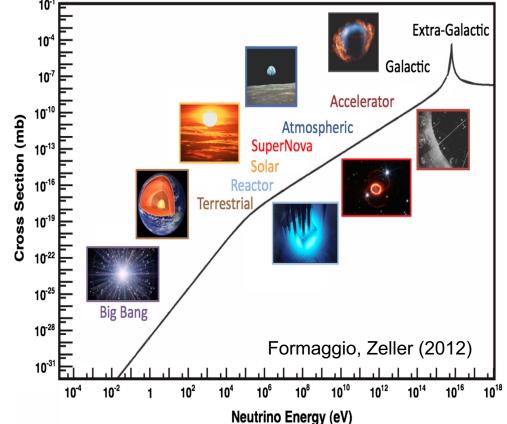
EASE

CMU 2t

THE FASER DETECTOR

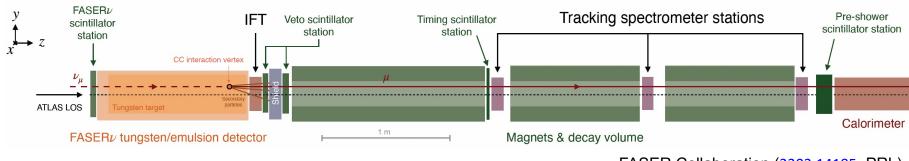
- Total length ~ 5 m, decay volume: R = 10 cm, L = 1.5 m.
- 3 permanent dipole magnets, Halbach design, constructed at CERN, 0.57 T, deflects charged particles in y.
- Tracker: 4 stations x 3 layers x 8 mod. = 96 ATLAS SCT modules. Resolution = 16 μ m in y, 820 μ m in x.
- Calorimeter: 2 x 2 LHCb ECAL modules.
- Scintillators: 4 stations, multiple layers, each 2 cm thick, >99.999% efficient. 4-layer veto ~ $(10^{-5})^4 \sim 10^{-20}$.
- FASERv: 770 interleaved sheets of tungsten + emulsion. 1 m long, 1.1 ton total mass. Micron-level spatial resolution, but no timing. Becomes over-exposed from muon tracks after ~20-30 fb⁻¹, must be replaced.

FASER DATA TAKING IN 2022 AND 2023


- FASER was ready to go in early 2021, and saw its first cosmic ray event on 18 March 2021.
- After LS2 from 2018-2021, the LHC started running again from Jul to Nov 2022 and Apr to Jul 2023.
- FASER began recording data immediately.
 - Recorded 97% of total lumi.
 - Largely automated: no control room, 2 shifters controlling and monitoring the expt from their laptops.

- FASERv emulsion exchanged periodically to prevent overexposure
 - 3 boxes in 2022 (0.5, 10, 30 fb⁻¹)
 - 2 boxes in 2023 (20, 10 fb⁻¹)

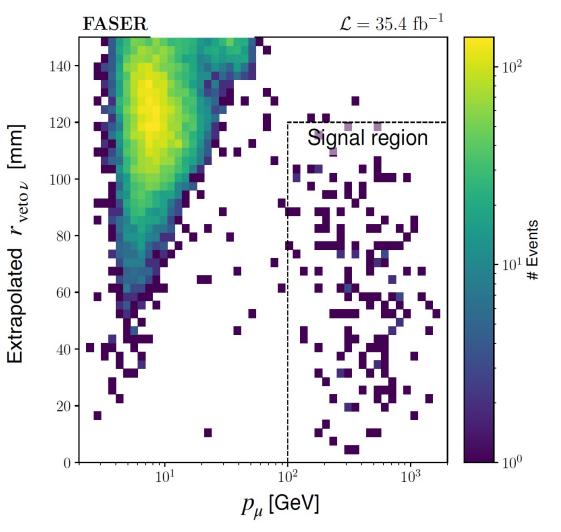
COLLIDER NEUTRINOS


- Neutrinos are the least understood of all known particles, and the only ones with confirmed BSM properties.
- They have been discovered from many sources, each time with stunning implications for particle physics, astrophysics, and cosmology.

 But before FASER, neutrinos produced at particle colliders had never been direct observed before: they interact very weakly, and the highest energy ones pass through the blind spots of existing detectors.

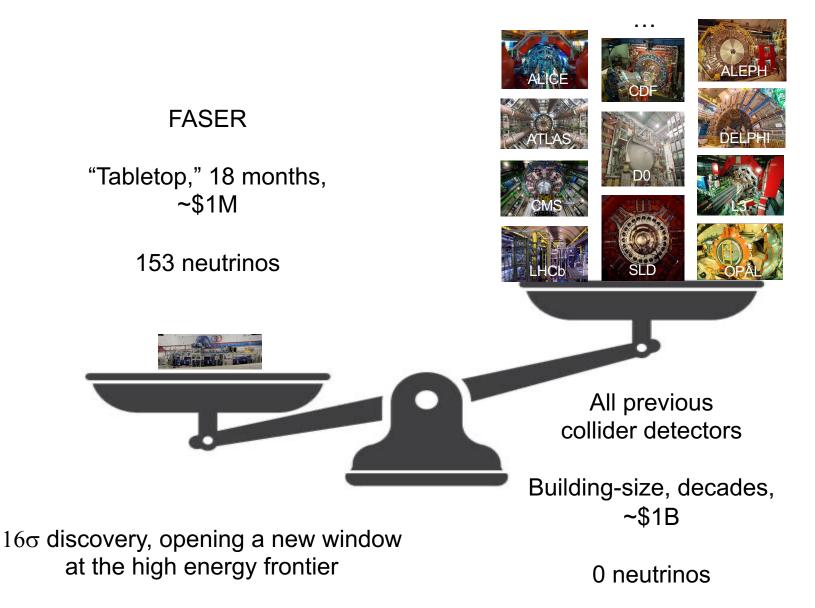
COLLIDER NEUTRINO SEARCH

• Neutrinos produced at the ATLAS IP travel 480 m and pass through FASERv. Occasionally, they can interact through $\nu_{\mu}N \rightarrow \mu X$, producing a high-energy muon, which travels through the rest of the detector.

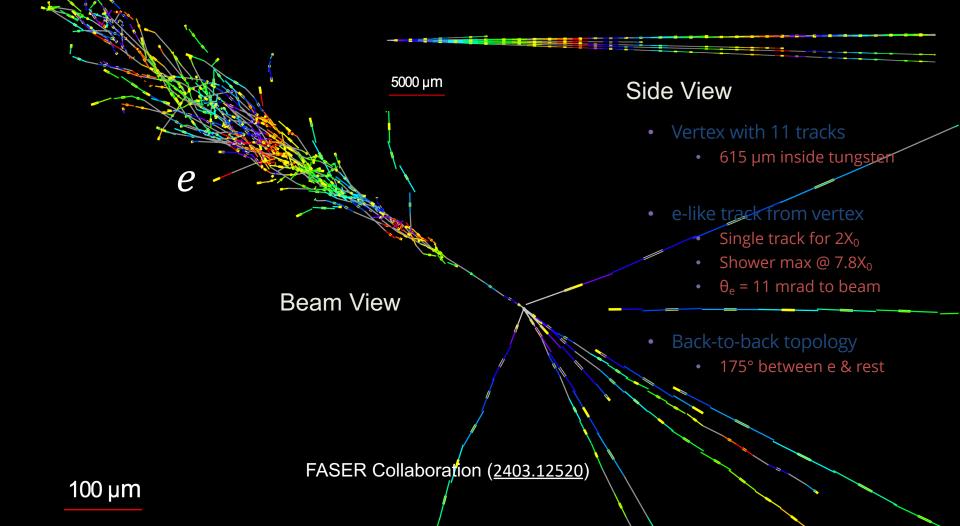

FASER Collaboration (2303.14185, PRL)

- The signal is no charged particle passing through the upstream veto scintillator detectors, hits in the downstream scintillators, and a single charged track, >100 GeV, in the central region of downstream trackers.
- Leading backgrounds from neutral hadrons produced in the rock, muons that enter from the side, or beam 1 background contribute ≤ 1 event.
- Expect 151 \pm 41 events from simulations, with the large uncertainty arising from the poorly understood flux of forward hadrons.

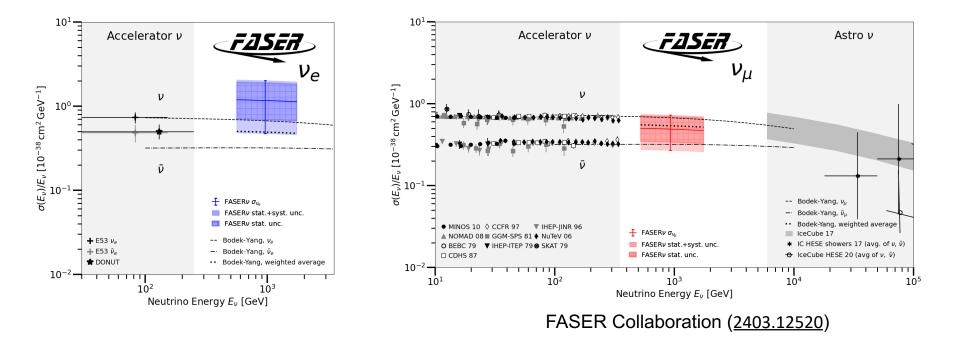
COLLIDER NEUTRINO RESULTS


[mm]

- After unblinding, we found 153 signal events
- 1st direct detection of collider neutrinos
 - Signal significance of $\sim 16\sigma$
 - Muon charge $\rightarrow v$ and \bar{v}
 - These include the highest energy v and \bar{v} interactions ever observed from a human source
- Following the FASER observation, SND@LHC, a complementary experiment in the "other" forward direction, discovered an additional 8 neutrinos.

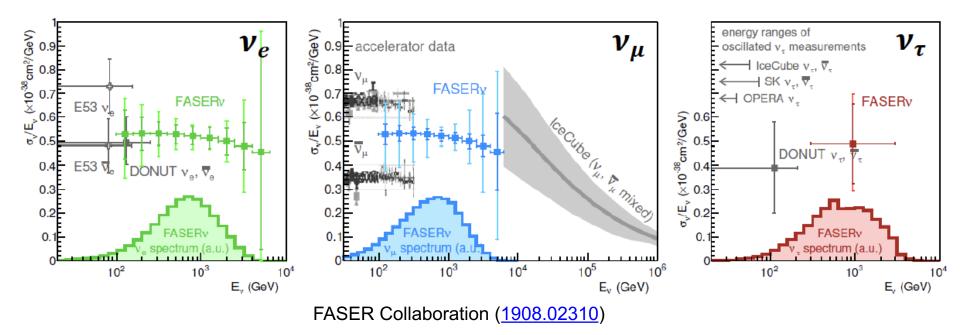

FASER Collaboration (2303.14185, PRL)

LOCATION, LOCATION, LOCATION

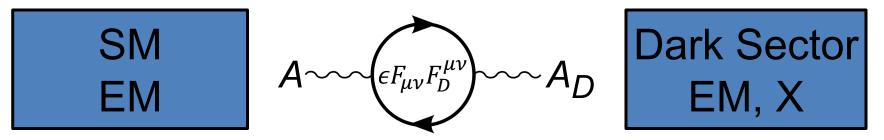

NEUTRINOS FROM EMULSION IN FASER $\boldsymbol{\nu}$

The discovery analysis did not even use the emulsion data! With the emulsion, we have now observed the first collider electron neutrinos, including the "Pika- ν " event, the highest energy (1.5 TeV) electron neutrino from a lab source.

TEV NEUTRINO CROSS SECTIONS

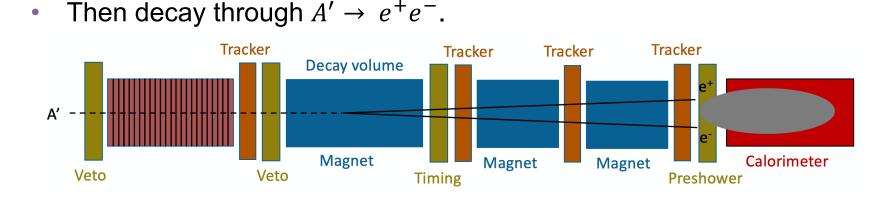

- Following these discoveries, we can then move on to studies, including the first measurement of neutrino cross sections at TeV energies.
- Results are consistent with SM DIS predictions.

 These measurements use only 1.7% of the data already collected in 2022 and 2023.


NEUTRINO PROJECTIONS

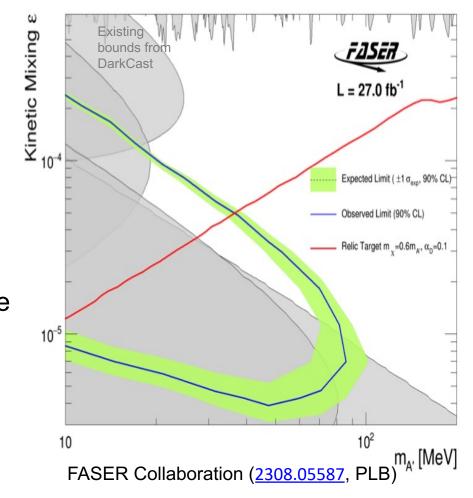
- By the end of Run 3 (\sim 300 fb⁻¹, 2025), we expect to
 - Record ~3000 v_e , ~10,000 v_{μ} , and ~50 v_{τ} interactions at TeV energies, the first direct exploration of this energy range for all 3 flavors.
 - Distinguish muon neutrinos from anti-neutrinos by combining FASER and FASERv data, and so measure their cross sections independently.
 - More than triple the world's supply of tau neutrinos, and detect the first ant-tau neutrino.

NEW PARTICLE SEARCHES


- Neutrinos are the only known light and weakly-interaction particles. But such particles appear generically in many BSM theories especially those addressing the neutrino mass and dark matter puzzles.
- For example: suppose there is a dark sector that contains dark matter X and also a dark force: dark electromagnetism.

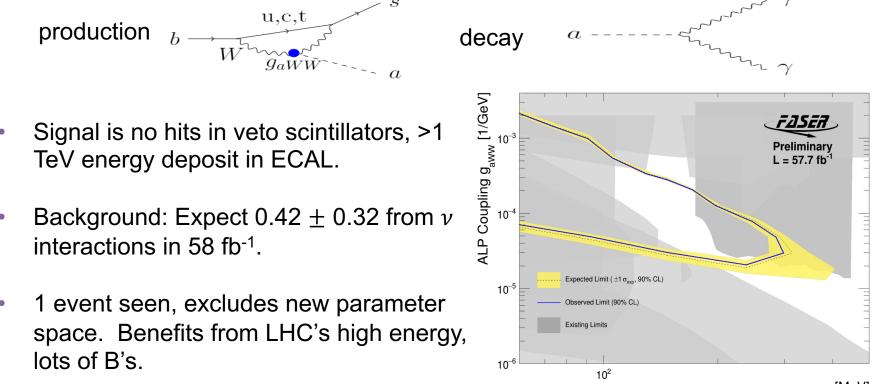
- The result? Dark photons A', like photons, but with mass $m_{A'}$, couplings suppressed by ϵ . Holdom (1986)
- For low
 e dark photons are long-lived particles (LLPs), can be produced in ATLAS, pass through rock and magnetic fields unhindered, and decay in FASER.
- Many other examples: sterile neutrinos, dark Higgs bosons, axion-like particles, light gauge bosons, light Binos, inflatons, ...

DARK PHOTON SIGNAL


- Focus on masses in the 10-100 MeV range.
- Produced through meson decay $\pi/\eta \rightarrow A'\gamma$ or "dark bremsstrahlung" $pp \rightarrow ppA'$.
- Travel straight and unimpeded through 480 m of rock/concrete.

The signal is no charged particle passing through the upstream veto scintillator detectors, followed by two very energetic (100s of GeV) charged tracks in downstream trackers. Tracks are very collimated, but magnet splits them sufficiently to be seen as 2 tracks in trackers.

DARK PHOTON RESULTS


- After unblinding, no events seen, FASER sets limits on previously unexplored parameter space.
- First new probe of the parameter space favored by dark matter from low coupling since the 1990's.
 Started probing new parameter space with the first day of data, ended up ~100 times more sensitive than previous experiments.
- Background-free analysis; contrary to conventional wisdom, N = 3 contours are conservative.

 For the future, factor of ~10 more luminosity and other improvements in Run 3 from 2023-25 data.

ALP-W SEARCH RESULTS

• Can also look for LLPs with purely photonic final states. E.g., ALP-Ws

m_a [MeV]

FASER Collaboration

CERN-

2024-001

- Future BSM searches: factor of ~10 more luminosity, improved analyses, hardware upgrades (high resolution preshower calorimeter).
- Improved sensitivity for all of these models, as well as many more particles to look for: U(1)_B, protophobic gauge bosons, ALP-γ, ALP-g, up-philic scalar, lightshining through walls axions, quirks, etc.

FORWARD PHYSICS FACILITY

Following the results of FASER and SND@LHC, CERN is considering the possibility of creating a dedicated Forward Physics Facility to house far-forward experiments for the rest of the LHC era from 2028-2040s.

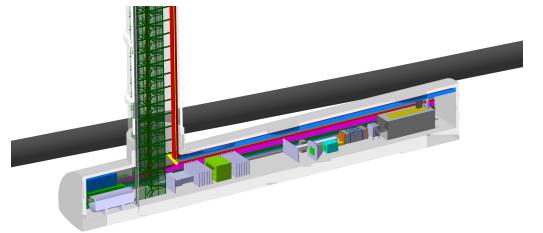
UJ18

https://cds.cern.ch/record/2851822

FPF site selection study and core study have identified an ideal site in France just outside the CERN main gate

ATLAS

SPS

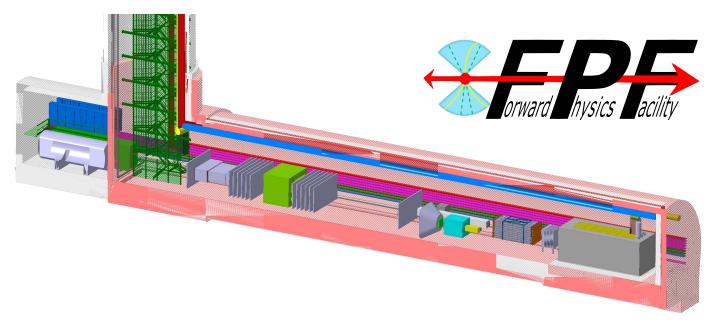

- ASEA

LHC

CERN GIS

THE FACILITY

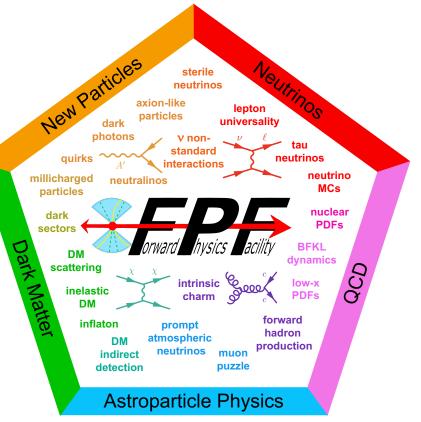
- A cylindrical cavern surrounding the LOS, 620-695 m west of the ATLAS IP.
- 75 m long, 12.5 m in diameter, covers $\eta > 5.1$.
- Preliminary (Class 4) cost estimate: 30 MCHF.
- Can be constructed independently of the LHC, does not disrupt LHC running.
- Timeline: construct in LS3/early Run 4, physics starts in late Run 4/Run5.


Bud, Magazinik, Pál, Osborne, et al. CERN CE (2024)

Proposed Civil Engineering Schedule

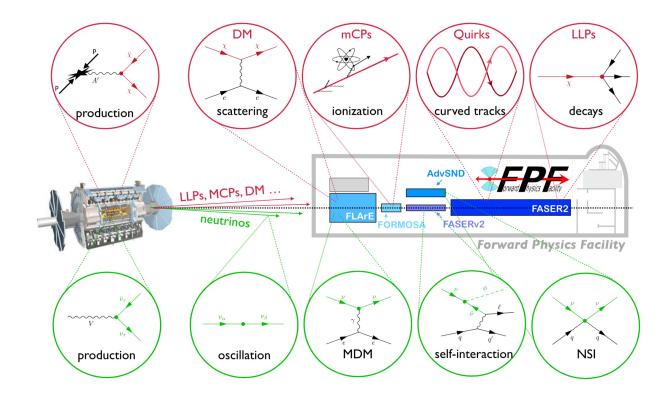
Civil engineering FPF Indicative Schedule	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4			Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4			01 0
LHC Operation Period	152		LS2	LHC run 3					LS3				run 4	
HL-LHC Operation												HL	-LHC	
		a	rk and Concept	-										
Further Infrastructure/ Integration studies			sign	i										
				*										
Site Investigation				si										
-						<u> </u>								
						<u>^</u>								
Technical design stage						Terbr	ical design							
rechnical design stage						Tech	iicai design							
									1					
Detailed design							Detaile	ed design						
							Detaile	in accept						
Procurement of design consultants														
Detailed design		_												
Tender specifications and drawings														
Environmental permits and consents														
	_		1		-					1	1			
Construction Contracts								Constr	uction Contracts					
Market survey														
Tender and award														
Mobilisation		1								1				
Construction Works											Construction wo	'ks		
Site installation and enabling works														
Shaft		1		1	1			1	1			1	1	
Tunneling and caverns		1		1	1			1	1				1	
		1		1	1	1	1	1						

FPF EXPERIMENTS

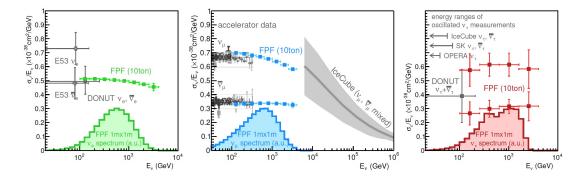

- At present there are 4 experiments being designed for the FPF
 - FASER2: magnetized spectrometer for BSM searches
 - FASERv2: emulsion-based neutrino detector
 - FLArE: LArTPC neutrino detector
 - FORMOSA: scintillator array for BSM searches (successor to MilliQan)

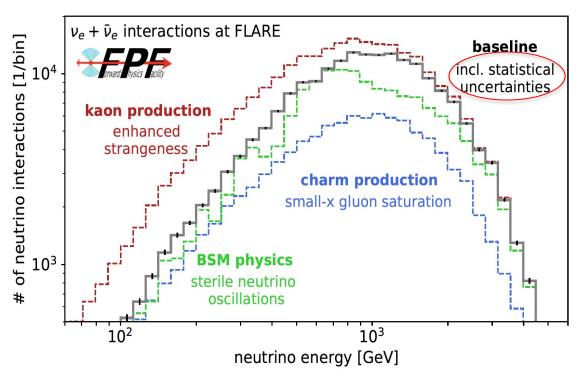
- These represent a huge jump relative to the existing experiments:
 - 10,000 times greater (decay volume * luminosity) for BSM searches.
 - Will detect millions of TeV neutrinos (~1000 neutrinos/day).

FORWARD PHYSICS FACILITY

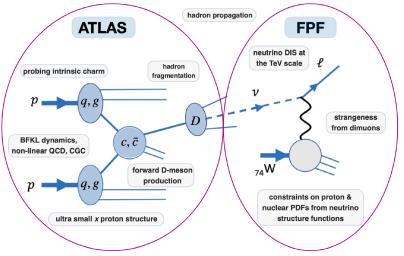

- The physics program in the far-forward region has been developed in a series of meetings and papers.
- FPF Meetings
 - FPF Kickoff Meeting, 9-10 Nov 2020
 - <u>FPF2 Meeting</u>, 27-28 May 2021
 - FPF3 Meeting, 25-26 Oct 2021
 - FPF4 Meeting, 31 Jan 1 Feb 2022
 - <u>FPF5 Meeting</u>, 15-16 Nov 2022
 - <u>FPF6 Meeting</u>, 8-9 Jun 2023
 - <u>FPF7 Meeting</u>, 29 Feb 1 Mar 2024
- FPF Papers
 - FPF "Short" Paper: 75 pages, 80 authors, Phys. Rept. 968, 1 (2022), <u>2109.10905</u>.
 - FPF White Paper: 429 pages, 392 authors+endorsers representing over 200 institutions, J. Phys. G (2023), <u>2203.05090</u>.

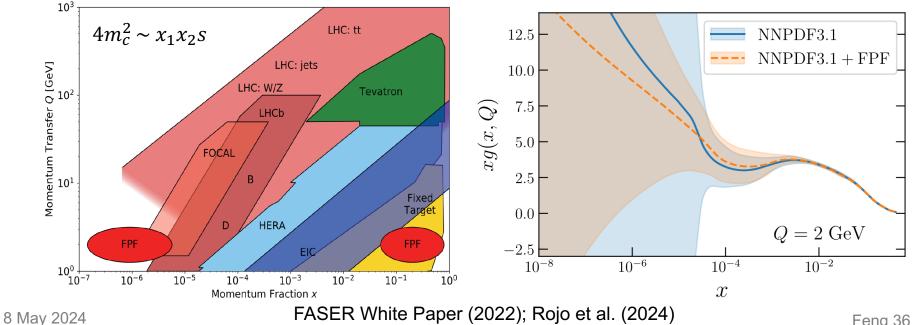
 Snowmass 2022: "Our highest immediate priority accelerator and project is the HL-LHC, ... including the construction of auxiliary experiments that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades."


NEW PHYSICS AT THE FPF


- The FPF is proposed to run at the HL-LHC with implications for
 - New physics in neutrino properties: neutrino blind → neutrino factory (10⁶ neutrinos at the highest human-made energies ever).
 - New particles: dark matter, dark sectors, milli-charged particles, new force particles, new Higgs-like particles, sterile neutrinos, quirks, …

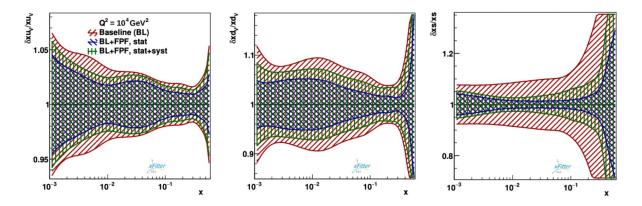
NEUTRINOS AT THE FPF

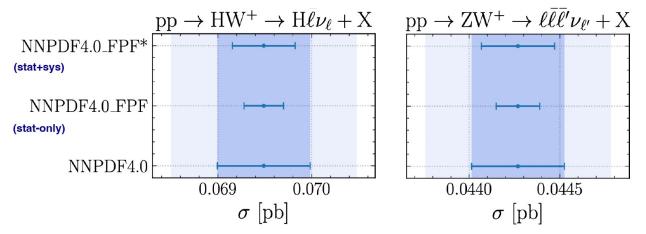

- The FPF experiments will see $10^5 v_e$, $10^6 v_{\mu}$, and $10^4 v_{\tau}$ interactions at ~ TeV energies where there is currently almost no data.
- Neutrinos are produced by forward hadron production: π, K, D,
 Dependence on E, η will inform
 - Astroparticle physics: muon puzzle, …
 - QCD: pdfs at $x \sim 10^{-1}$, $x \sim 10^{-7}$, intrinsic charm, small-x gluon saturation, ...
 - Neutrino oscillations: v_s with $\Delta m^2 \sim 10^3 \text{ eV}^2$



QCD AT THE FPF

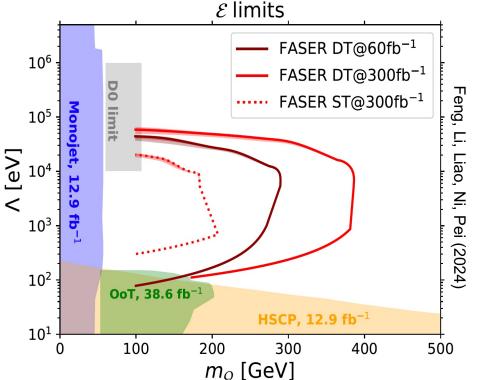
- The FPF will enable a rich program of QCD and hadron structure studies.
- Forward neutrino production is a probe of ٠ forward hadron production, BFKL dynamics, intrinsic charm, and proton structure at ultra small x ~ 10^{-7} to 10^{-6} .
- Important implications for UHE cosmic ray experiments, ATLAS/CMS at HL-LHC, ...




COMPLEMENTARITY WITH HIGH PT PHYSICS

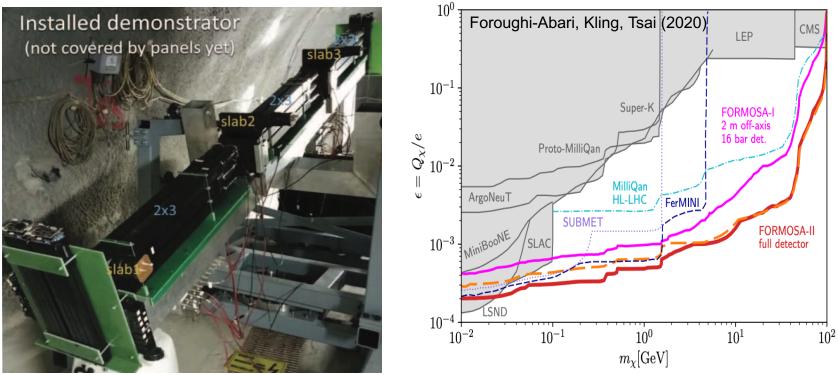
- The FPF will provide new constraints on pdfs that will sharpen studies at ATLAS and CMS.
- For example, W, Z, and Higgs boson studies.
- Will also remove degeneracies between pdfs and new physics (fitting away new physics), enhancing the reach for, e.g., new resonance searches.

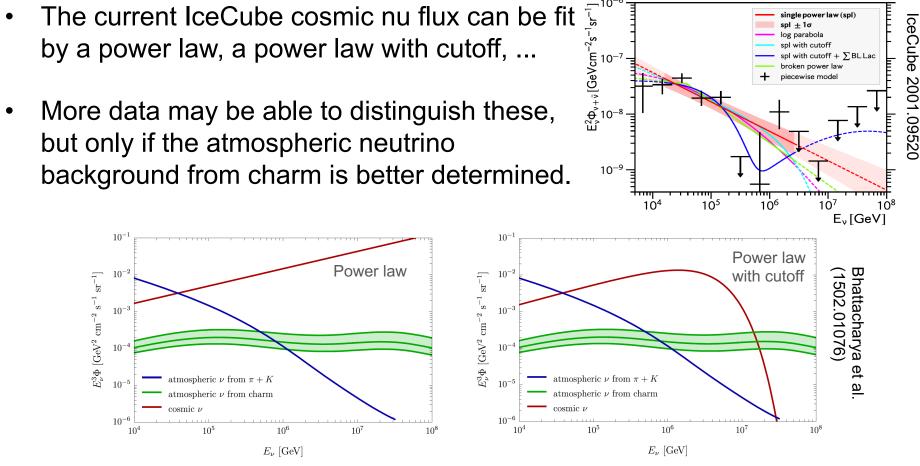
Ubiali et al., in progress


Cruz-Martinez, Fieg, Giani, Krack, Makela, Rabemananjara, Rojo (2023)

Feng 38

QUIRKS: STRONGLY-INTERACTING DARK SECTORS

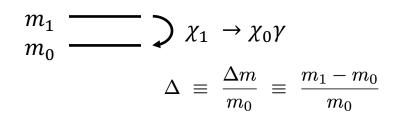

- Quirks are particles charged under both the SM and a strong-interacting dark force, with $m \gg \Lambda$.
- Quirks can be pair-produced at the LHC, but the quirk-antiquirk pair is bound together and has $p_T \approx 0$. They therefore preferentially travel down the beampipe, and may pass through FPF detectors. \mathcal{E} lin
- By looking for 2 coincident slow or delayed tracks (out of time with the bunch crossing), FASER and FASER2 can discover quirks with masses up to ~ hundreds of GeV to TeV, as motivated by neutral naturalness solutions to the gauge hierarchy problem.
- Only possible at the EF, not at fixed target experiments.


MILLI-CHARGED PARTICLES AT THE FPF

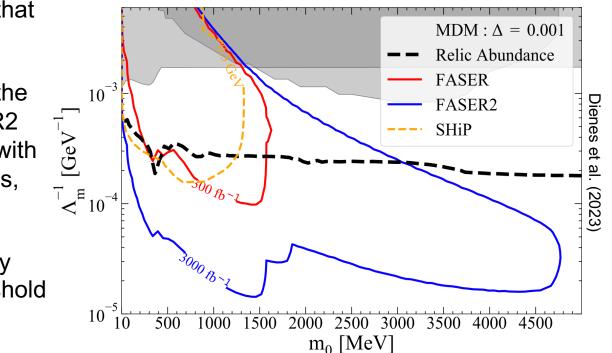
- A completely generic possibility motivated by dark matter, dark sectors. Currently the target of the MilliQan experiment, located at the LHC near the CMS experiment in a "non-forward" tunnel.
- The MilliQan Demonstrator (Proto-MilliQan) already probes new region. Full MilliQan can also run in this location in the HL-LHC era, but the sensitivity may be improved significantly by moving it to the FPF (FORMOSA).

8 May 2024

ASTROPARTICLE PHYSICS AT THE FPF

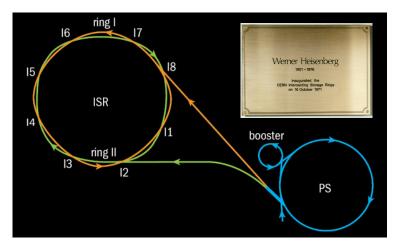

• This can be measured in the controlled environment of a particle collider if

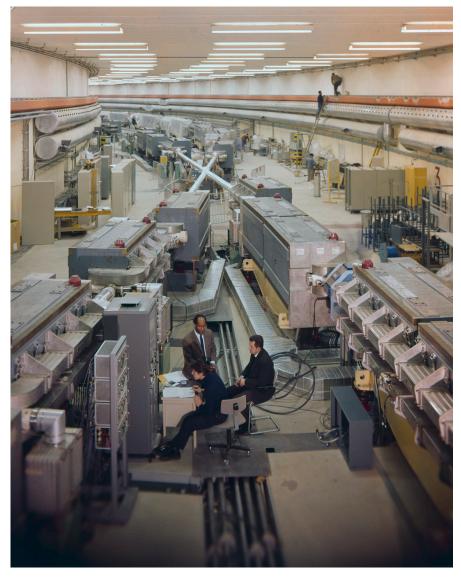
 $-\sqrt{s} \sim \sqrt{2E_{\nu}m_p} \sim 10$ TeV for $E_{\nu} \sim 10^7$ GeV: Requires the energy of the LHC


- $x_{1,2} \sim \frac{m_c}{\sqrt{s}} e^{\pm \eta} \Rightarrow \eta \sim 7$ to 9: Requires the far forward angular coverage of the FPF

LLPS FROM COMPRESSED SPECTRA

- LLPs can result from weak couplings.
- But they can also arise generically from compressed spectra (e.g., inelastic DM), where decays are phase-space suppressed by degeneracies.


$$\mathcal{O}_m ~=~ rac{1}{\Lambda_m} \overline{\chi}_1 \sigma^{\mu
u} \chi_0 F_{\mu
u}$$



- In this case, decays $\chi_1 \rightarrow \chi_0 \gamma$ lead to very soft photons that can be difficult to detect.
- But these are boosted at the LHC by γ ~ 1000, FASER2 can detect GeV particles with even ~MeV mass splittings, thermal relic target.
- Difficult at SHiP (sensitivity contour assumes E_{γ} threshold of 300 MeV, 2 10²⁰ POT).

A CAUTIONARY TALE

- Sometimes to look forward, it pays to first look back.
- 2021 was the 50th anniversary of the birth of hadron colliders.
- In 1971, CERN's Intersecting Storage Rings (ISR), with a circumference of ~1 km, collided protons with protons at center-ofmass energy 30 GeV.

ISR'S LEGACY

- During ISR's 50th anniversary, there were many fascinating articles and talks by eminent physicists looking back on the ISR's legacy.
 - "Enormous impact on accelerator physics, but sadly little effect on particle physics." – Steve Myers, talk at "The 50th Anniversary of Hadron Colliders at CERN," October 2021.
 - "There was initially a broad belief that physics action would be in the forward directions at a hadron collider.... It is easy to say after the fact, still with regrets, that with an earlier availability of more complete... experiments at the ISR, CERN would not have been left as a spectator during the famous November revolution of 1974 with the J/ψ discoveries at Brookhaven and SLAC ." – Lyn Evans and Peter Jenni, "Discovery Machines," CERN Courier (2021).
- Bottom line: The collider was creating new forms of matter (charm), but the detectors focused on the forward region (along the beamline) and so missed them. Let's not follow this precedent!

CONCLUSIONS

- In the last year, we have directly detected collider neutrinos for the first time, opening up a new window at the energy frontier.
- Forward experiments have a broad physics program
 - The study of collider neutrinos at TeV energies, with implications for neutrinos, QCD, astroparticle physics, and high p_T physics.
 - Searches for light (and also heavy), weakly-interacting BSM particles, including many motivated by dark matter.
- I have no doubt that neutrino detectors will be included in all future collider plans, just like trackers and calorimeters. It would be good to do this for the HL-LHC as well. The Forward Physics Facility is now being considered for the HL-LHC (2028-2040s).