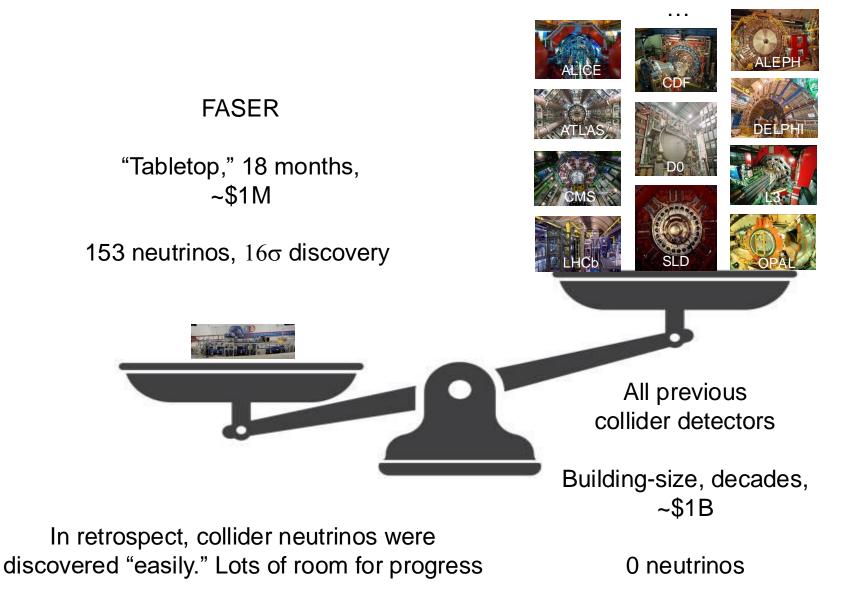

MULTI-MESSENGER COLLIDER PHYSICS

IceCube Fall 2024 Collaboration Meeting, Madison, Wisconsin Jonathan Feng, UC Irvine, 26 September 2024


THE MULTI-MESSENGER ERA

- Astronomy
 - ~1000 years ago: optical photons
 - ~100 years ago: multi-wavelength photons
 - ~10 years ago: neutrinos (IceCube), gravitational waves (LIGO)
 - Multi-messenger astronomy provides new probes of outer space
- Collider Physics
 - ~70 years ago: photons, charged particles
 - 12 years ago: Higgs bosons (ATLAS/CMS)
 - 1 year ago: neutrinos (FASER)
 - Multi-messenger collider physics provides new probes of inner space
- Many areas of overlap between IceCube and FASER: neutrinos, but also searches for dark matter, other new particles

The first observation of neutrinos produced at a particle collider opens a new field of study and offers ways to test the limits of the standard model.

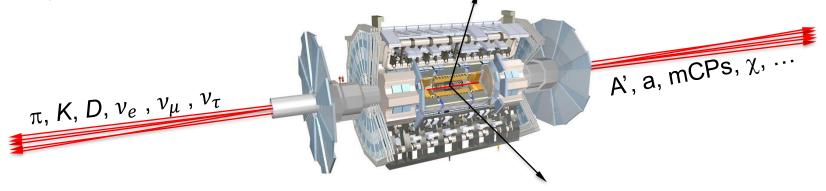
THE DAWN OF COLLIDER NEUTRINO PHYSICS

THE LARGE HADRON COLLIDER

HCh

CERN Prévessin

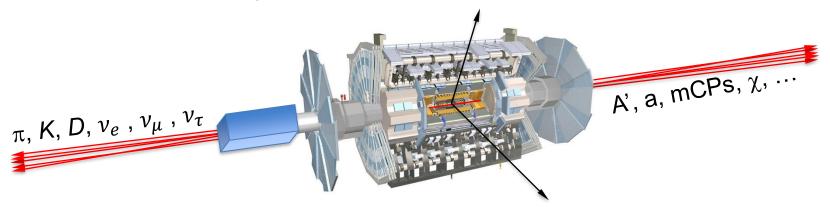
ATLA


ALICE

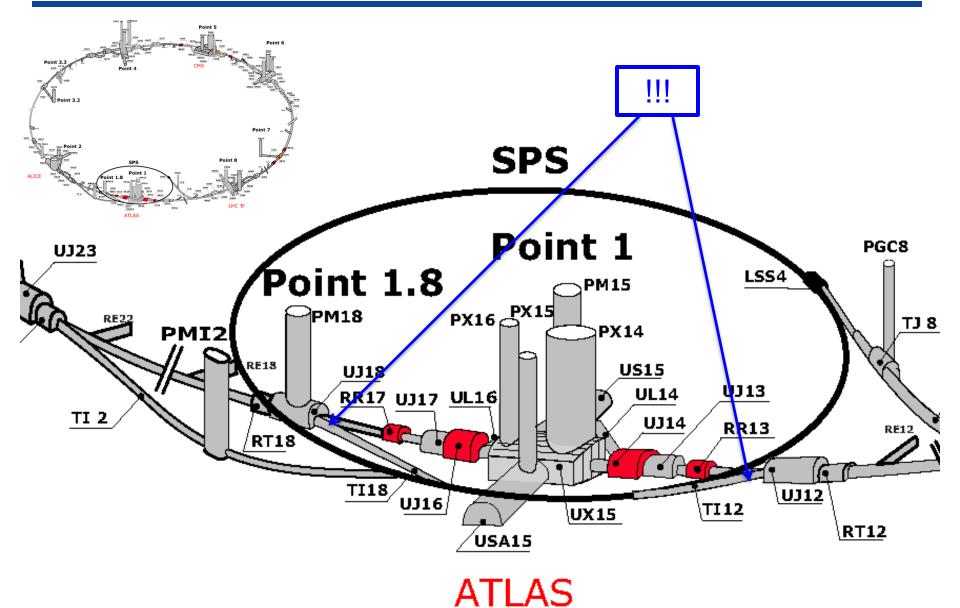
The LHC started running in 2010, and is scheduled to run until the 2040s. It is halfway through its lifetime in years, but only 10% through its lifetime in terms of integrated luminosity.

CMS

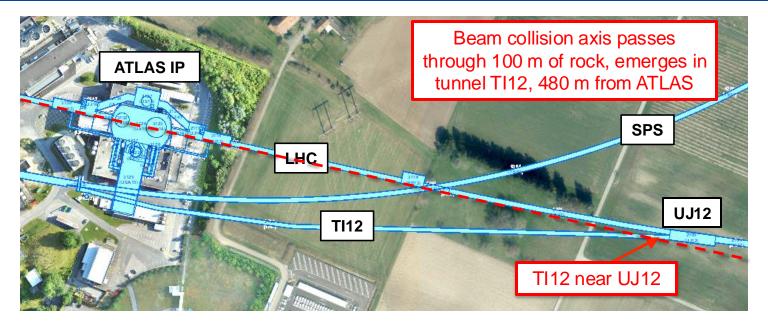
FORWARD PHYSICS


- In 2017, we realized that the large LHC detectors, while optimally configured to discover new heavy particles, are also optimally configured to miss new light particles.
 Feng, Galon, Kling, Trojanowski (2017)
- Heavy particles (W, Z, t, h, ...) are produced at low velocity and decay roughly isotropically to other particles.

- But high-energy light particles are dominantly produced in the forward direction and escape through the blind spots of these large detectors.
 - This is true for all known light particles: pions, kaons, D mesons, all neutrinos.
 - It is also true for many proposed particles, especially light, weakly-interacting ones motivated by neutrino mass and dark matter.
- These blind spots are the Achilles heels of the large LHC detectors. 26 Sep 2024

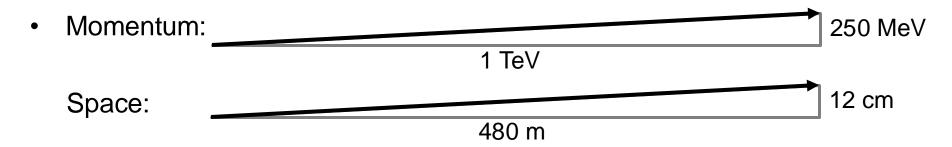

DETECTING FORWARD PARTICLES

- To capture the enormous forward flux, we need to detect particles that are produced in the forward direction along the beamline.
- Problem: we can't just put the detector there: they will block the protons from coming in.



 Solution: the LHC is a circular collider! If we go far enough away, the LHC proton beam will curve away, while all the light, weaklyinteracting particles we are looking for will go straight.

MAP OF THE LHC


THE FORWARD REGION

HOW BIG DOES THE DETECTOR HAVE TO BE?

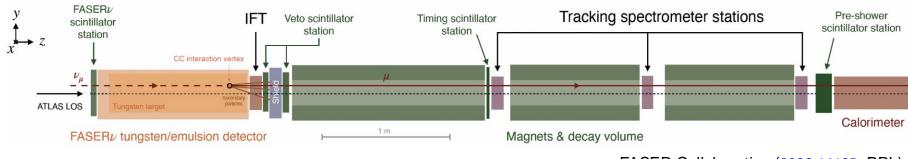
- Consider light, weakly-interacting particles produced in pion decay. E.g.,
 - SM: muon neutrinos produced in $\pi^{\pm} \rightarrow \mu \nu_{\mu}$
 - BSM: dark photons produced in $\pi^0 \rightarrow \gamma A'$

- The opening angle is 0.2 mrad (the moon is 7 mrad). Even 480 m away, most of the signal passes through an 8.5" x 11" sheet of paper.
- Neutrinos and light new particles are therefore extremely collimated, motivating a relatively small, fast, and inexpensive experiment at the LHC: the ForwArd Search ExpeRiment (FASER).

FASER COLLABORATION

108 collaborators, 27 institutions, 11 countries

FASER AND THE LHC

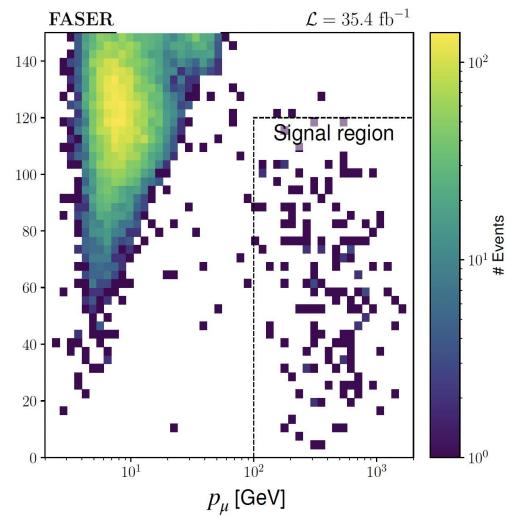

THE FASER DETECTOR

FASEF

CMU 2t

COLLIDER NEUTRINO SEARCH

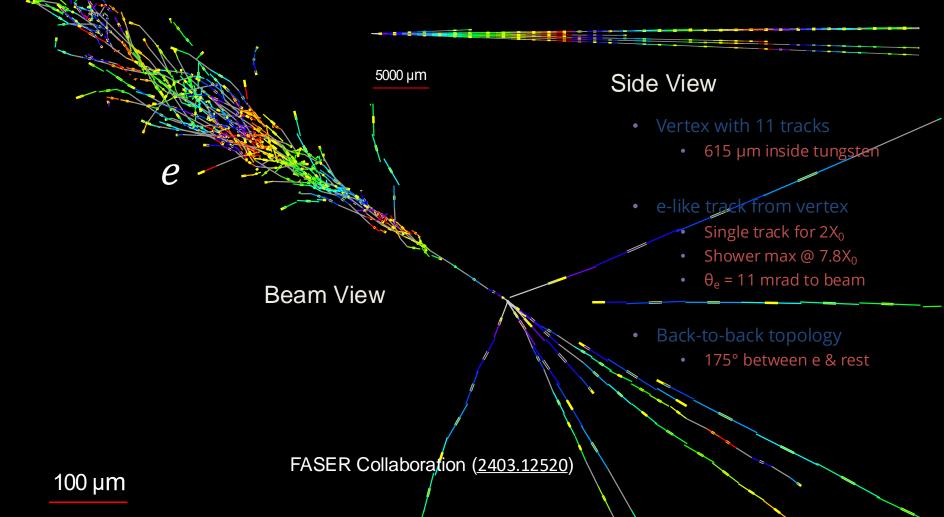
• Neutrinos produced at the ATLAS IP travel 480 m and pass through FASERv. Occasionally, they can interact through $\nu_{\mu}N \rightarrow \mu X$, producing a high-energy muon, which travels through the rest of the detector.


FASER Collaboration (2303.14185, PRL)

- The signal is no charged particle passing through the upstream veto scintillators, hits in the downstream scintillators, and a single charged track, >100 GeV, in the central region of downstream trackers.
- Leading backgrounds from neutral hadrons produced in the rock, muons that enter from the side, or beam 1 background contribute ≤ 1 event.
- Expect 151 \pm 41 events from simulations, with the large uncertainty arising from the poorly understood flux of forward hadrons.

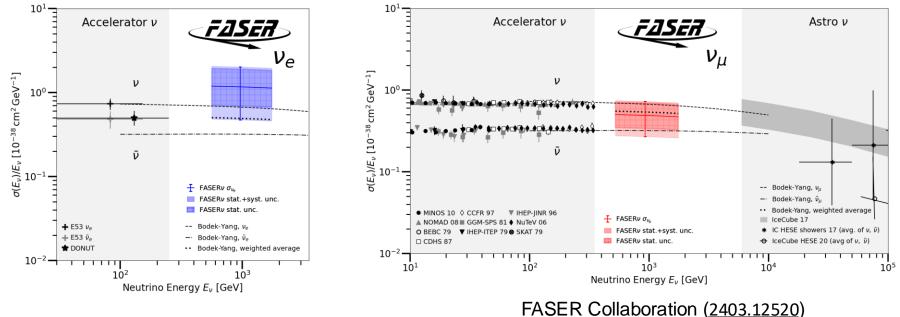
COLLIDER NEUTRINO RESULTS

[mm]


- After unblinding, we found 153 signal events.
- 1st direct detection of collider neutrinos.
 - Signal significance of $\sim 16\sigma$
 - Muon charge $\rightarrow v$ and \bar{v}
 - Extrapolated $r_{\text{veto }\nu}$ These include the highest energy v and \bar{v} interactions ever observed from a human source
- Following the FASER observation, SND@LHC, a complementary experiment in the "other" forward direction, discovered an additional 8 neutrinos.

FASER Collaboration (2303.14185, PRL)

NEUTRINOS FROM EMULSION IN FASER $\boldsymbol{\nu}$


The discovery analysis did not even use the emulsion detector! With the emulsion, we have now observed the first collider electron neutrinos, including the "Pika-v" event, the highest energy (1.5 TeV) electron neutrino from a lab source.

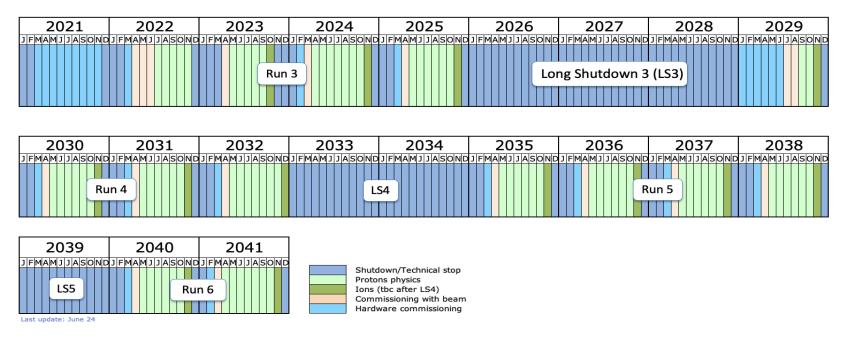
TEV NEUTRINO CROSS SECTIONS

- Following these discoveries, we can then move on to studies, including the first measurement of neutrino cross sections at TeV energies.
- Results are consistent with SM DIS predictions.

Xie, Gao, Hobbs, Stump, Yuan (2024)

 These measurements use only 1.7% of the data collected in 2022 and 2023.

NEW PARTICLE SEARCHES


- FASER is also sensitive to an entire zoo of light, weakly-interacting new particles. For example:
 - Dark photons produced through $\pi/\eta \rightarrow A'\gamma$ or $pp \rightarrow ppA'$, then decay $A' \rightarrow e^+e^-$.
- Tracker Tracker Tracker Tracker **Decay volume** A **Calorimeter** Magnet Magnet Magnet Veto Veto Timing Preshower Kinetic Mixing ε ALP Coupling g_{aww} [1/GeV] asea FASER L = 27.0 fb⁻¹ 10^{-3} Preliminary = 57.7 fb 10 Expected Limit (±1 σ_{exp}, 90% CL) 10^{-4} erved Limit (90% CL) Target m =0.6m , a =0. Expected Limit (±1 σ_{exp}, 90% CL) 10^{-5} 10-5 erved Limit (90% CL Existing Limits FASER Collaboration (2308.05587, PLB) FASER Collaboration (CERN-FASER-CONF-2024-001) 10^{-6} 10 10² m_A. [MeV] 10²
- ALPs coupled to Ws, produced through $B \to K a$, then decay $a \to \gamma \gamma$.

m_a [MeV]

• FASER started probing new parameter space after 1 day of LHC running.

WHAT'S NEXT

 FASER is running now, will collect data through the rest of 2024 and 2025 (and 2026, if LS3 is delayed), for a total of ~300 fb⁻¹.

- FASER is approved for LHC Run 4, when High-Luminosity LHC running will add ~700 fb⁻¹, with various detector upgrades in the works.
- For the rest of the HL-LHC era, the proposed Forward Physics Facility, will enable the LHC to fully realize the potential of forward physics.

FORWARD PHYSICS FACILITY

Following the results of FASER and SND@LHC, CERN is considering the possibility of creating a dedicated Forward Physics Facility to house far-forward experiments for the rest of the LHC era from 2028-2040s.

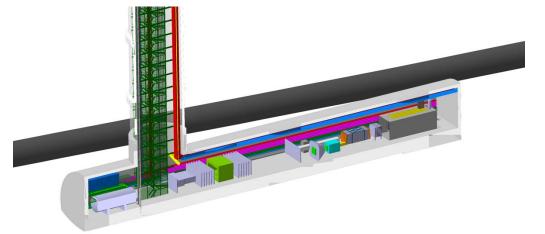
ATLAS

UJ18

FPF site selection study and core study have identified an ideal site in France just outside the CERN main gate

SPS

-<u>ASER</u>

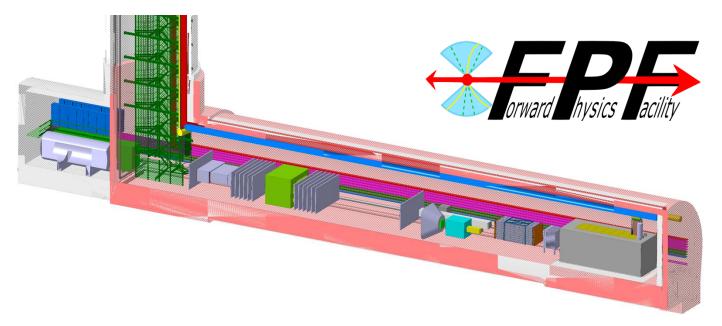

LHC

CERN GIS

THE FACILITY

ite and Civil Engineerin

- A cylindrical cavern surrounding the LOS, 620-695 m west of the ATLAS IP.
- 75 m long, 12 m in diameter, covers $\eta > 5.1$.
- Preliminary (Class 4) cost estimate: 35 MCHF.
- Can be constructed independently of the LHC, does not disrupt LHC running.
- Timeline: construct in LS3/early Run 4, physics starts in late Run 4/Run5.


Bud, Magazinik, Pál, Osborne, et al. CERN CE (2024)

Proposed Civil Engineering Schedule

Civil engineering FPF Indicative Schedule	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4			4 Q1 Q
LHC Operation Period	152		152	LHC run 3					153			LHC		
HL-LHC Operation												HL	LHC	
		Canal Manager	rk and Concept	-							1	1		-
Further Infrastructure/ Integration studies			isign											
				*										
Site Investigation				SI										
						X						1		-
Technical design stage						Techr	ical design							
Detailed design							Detaile	d design						
Procurement of design consultants	_													-
Detailed design	_													
Tender specifications and drawings		1												
Environmental permits and consents		1												
											1			
Construction Contracts								Cons	truction Contracts					
Market survey														
Tender and award														
Mobilisation		1												
Construction Works											Construction wor	ks		
Site installation and enabling works	_													+
Shaft														
Tunneling and caverns		1												
		1												

FPF EXPERIMENTS

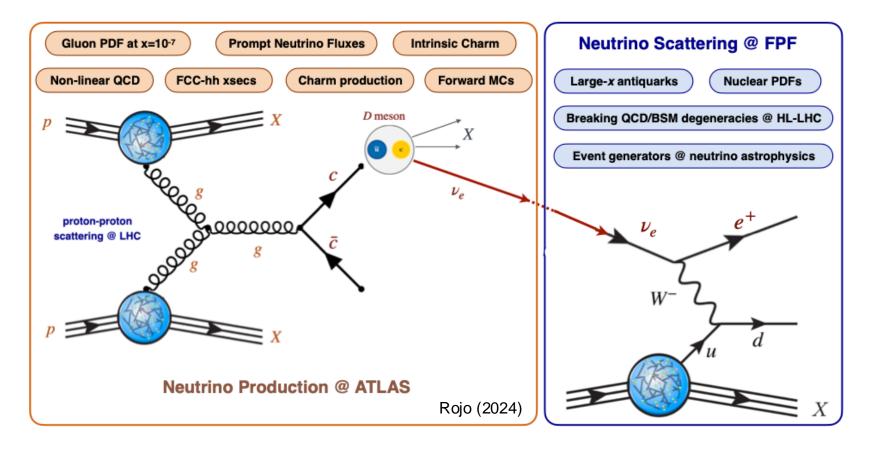
- At present there are 4 experiments being designed for the FPF
 - FASER2: magnetized spectrometer for BSM searches
 - FASERv2: emulsion-based neutrino detector
 - FLArE: LArTPC neutrino detector
 - FORMOSA: scintillator array for BSM searches (successor to MilliQan)

- These represent a huge jump relative to the existing experiments:
 - 10,000 times greater (decay volume * luminosity) for BSM searches, unique discovery potential in many models of dark matter and new particles.

IMPLICATIONS FOR ASTROPARTICLE PHYSICS

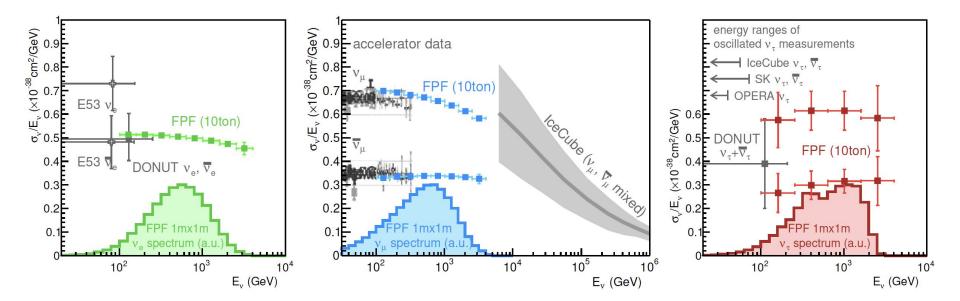
- Current and future LHC neutrino detectors will detect many neutrinos, determine their flavor, and distinguish nu from anti-nu (at least for mu and tau)
- Current LHC neutrino detectors: ~10,000 TeV neutrinos
 Future LHC neutrino detectors: ~1,000,000 TeV neutrinos (~1,000 per day!)

	D	etector	Number of CC Interactions					
Name	Mass	Coverage	Luminosity	$ u_e + \bar{\nu}_e $	$ u_{\mu}\!\!+\!ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$		
$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	$150 {\rm ~fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97		
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m ~fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6		
$FASER\nu 2$	20 tons	$\eta\gtrsim 8.5$	$3~{ m ab}^{-1}$	178k / 668k	943k / 1.4M	2.3k / 20k		
FLArE	10 tons	$\eta\gtrsim7.5$	$3 \mathrm{~ab^{-1}}$	36k / 113k	203k / 268k	1.5k / 4k		

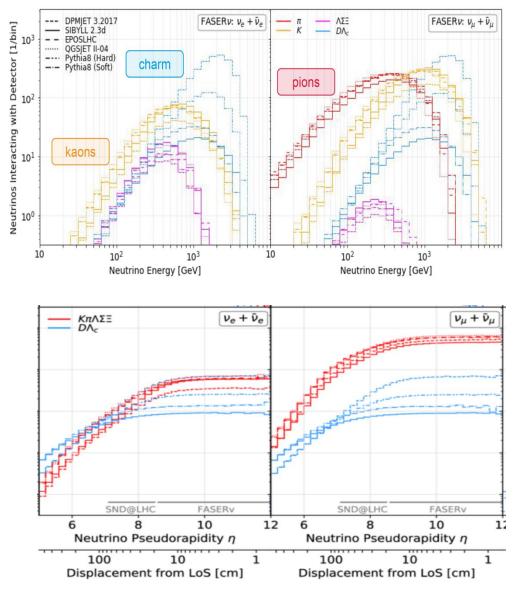

Kling, Nevay (2021); FASER Collaboration (2024)

- What can we do with these?
- Many interesting probes of neutrino properties, QCD, and complementarities with IceCube and other astroparticle experiments.

Cher FPF workshop participants: Halzen, Engel, Pierog, Fedynitch, Sarkar, Lu, ...


PRODUCTION, PROPAGATION, INTERACTION

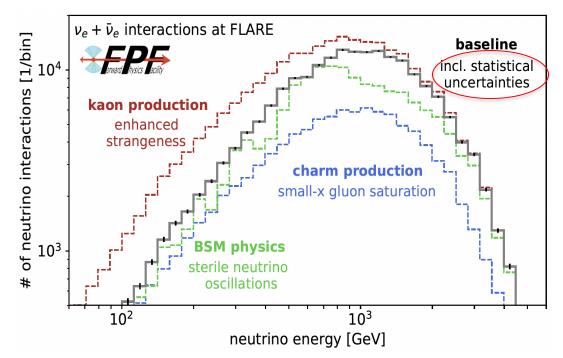
- The large statistics will allow for double differential event rates as a function of energy and pseudorapidity for each neutrino flavor.
- These differential distributions probe a vast number of interconnected topics.


NEUTRINO PROPERTIES

- Assuming known forward hadron production, the large event rates will enable precise measurements of neutrino interaction cross section at TeV energies between fixed target experiments and IceCube.
- Can confirm neutrino deep-inelastic scattering or test non-standard neutrino interactions, enable precision tau neutrino studies.

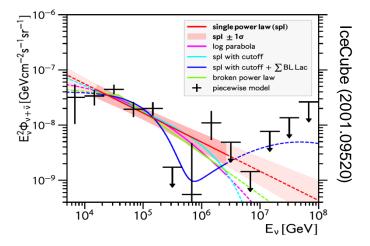
NEUTRINOS AS TRACERS OF HADRON PRODUCTION

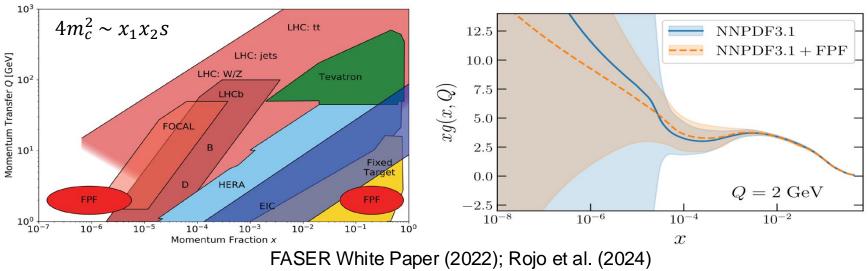
- Alternatively, assuming neutrino DIS, event rates probe neutrino fluxes, that is, forward hadron production.
- Pions produce v_{μ} , kaons produce v_{μ} and v_e , charm mesons produce v_{μ} , v_e , and v_{τ} with distinct energy and pseudorapidity distributions.
- There are currently significant differences in forward hadron production models, which can be greatly constrained by data from forward experiments.


Kling, Nevay (2021)

LIGHT FLAVORS AND COSMIC MUON PUZZLE

Soldin (2108.08341), Albrecht et al. (2022)


- Observations of extensive air showers see a significant excess of muons compared to hadronic interaction models.
- A proposed resolution is enhanced strangeness: pions replaced by kaons.
- A kaon/pion enhancement would be reflected as an enhanced v_e/v_μ ratio, which would be very obvious in the v_e spectrum.


CHARM AND PROMPT ATMOSPHERIC NEUTRINOS

- Prompt atmospheric neutrino production is a difficult background to extragalactic astrophysical neutrinos at IceCube, with similar zenith angle distribution (isotropic).
- $gg \rightarrow cc$ is perturbative, but a leading uncertainty is the gluon pdf at small x. This can be measured in the controlled environment of a collider if

 $-\sqrt{s} \sim \sqrt{2E_{\nu}m_p} \sim 10$ TeV for $E_{\nu} \sim 10^7$ GeV: Requires the energy of the LHC

- $x_{1,2} \sim \frac{m_c}{\sqrt{s}} e^{\pm \eta} \Rightarrow \eta \sim 7$ to 9: Requires the far forward angular coverage of the FPF

SUMMARY

- The forward region, previously thought of as uninteresting, is in fact a treasure trove of interesting physics.
 - Collider neutrinos at TeV energies, with implications for neutrino properties, QCD, and astroparticle physics.
 - Unique searches for new light, weakly-interacting particles and other BSM particles, including many motivated by dark matter.
- Particularly interesting interplay with astroparticle physics, will shed light on forward hadron interaction models, the cosmic muon puzzle, prompt atmospheric neutrinos, ...
- FASER and SND@LHC are currently operating, with many more results to come. The proposed Forward Physics Facility will be able to fully realize the LHC's forward physics potential in the HL-LHC era from 2028-2042.